64 resultados para Remote sensing data
Resumo:
Proceedings of the 11th Australasian Remote Sensing and Photogrammetry Conference
Resumo:
Proceedings of the 11th Australasian Remote Sensing and Photogrammetry Conference
Resumo:
Proceedings of the 11th Australasian Remote Sensing and Photogrammetry Conference
Resumo:
This paper reviews the potential use of three types of spatial technology to land managers, namely satellite imagery, satellite positioning systems and supporting computer software. Developments in remote sensing and the relative advantages of multispectral and hyperspectral images are discussed. The main challenge to the wider use of remote sensing as a land management tool is seen as uncertainty whether apparent relationships between biophysical variables and spectral reflectance are direct and causal, or artefacts of particular images. Developments in satellite positioning systems are presented in the context of land managers’ need for position estimates in situations where absolute precision may or may not be required. The role of computer software in supporting developments in spatial technology is described. Spatial technologies are seen as having matured beyond empirical applications to the stage where they are useful and reliable land management tools. In addition, computer software has become more user-friendly and this has facilitated data collection and manipulation by semi-expert as well as specialist staff.
Resumo:
Traditional field sampling approaches for ecological studies of restored habitat can only cover small areas in detail, con be time consuming, and are often invasive and destructive. Spatially extensive and non-invasive remotely sensed data can make field sampling more focused and efficient. The objective of this work was to investigate the feasibility and accuracy of hand-held and airborne remotely sensed data to estimate vegetation structural parameters for an indicator plant species in a restored wetland. High spatial resolution, digital, multispectral camera images were captured from an aircraft over Sweetwater Marsh (San Diego County, California) during each growing season between 1992-1996. Field data were collected concurrently, which included plant heights, proportional ground cover and canopy architecture type, and spectral radiometer measurements. Spartina foliosa (Pacific cordgrass) is the indicator species for the restoration monitoring. A conceptual model summarizing the controls on the spectral reflectance properties of Pacific cordgrass was established. Empirical models were developed relating the stem length, density, and canopy architecture of cordgrass to normalized-difference-vegetation-index values. The most promising results were obtained from empirical estimates of total ground cover using image data that had been stratified into high, middle, and low marsh zones. As part of on-going restoration monitoring activities, this model is being used to provide maps of estimated vegetation cover.
Resumo:
The Montreal Process indicators are intended to provide a common framework for assessing and reviewing progress toward sustainable forest management. The potential of a combined geometrical-optical/spectral mixture analysis model was assessed for mapping the Montreal Process age class and successional age indicators at a regional scale using Landsat Thematic data. The project location is an area of eucalyptus forest in Emu Creek State Forest, Southeast Queensland, Australia. A quantitative model relating the spectral reflectance of a forest to the illumination geometry, slope, and aspect of the terrain surface and the size, shape, and density, and canopy size. Inversion of this model necessitated the use of spectral mixture analysis to recover subpixel information on the fractional extent of ground scene elements (such as sunlit canopy, shaded canopy, sunlit background, and shaded background). Results obtained fron a sensitivity analysis allowed improved allocation of resources to maximize the predictive accuracy of the model. It was found that modeled estimates of crown cover projection, canopy size, and tree densities had significant agreement with field and air photo-interpreted estimates. However, the accuracy of the successional stage classification was limited. The results obtained highlight the potential for future integration of high and moderate spatial resolution-imaging sensors for monitoring forest structure and condition. (C) Elsevier Science Inc., 2000.
Resumo:
An assessment of the changes in the distribution and extent of mangroves within Moreton Bay, southeast Queensland, Australia, was carried out. Two assessment methods were evaluated: spatial and temporal pattern metrics analysis, and change detection analysis. Currently, about 15,000 ha of mangroves are present in Moreton Bay. These mangroves are important ecosystems, but are subject to disturbance from a number of sources. Over the past 25 years, there has been a loss of more than 3800 ha, as a result of natural losses and mangrove clearing (e.g. for urban and industrial development, agriculture and aquaculture). However, areas of new mangroves have become established over the same time period, offsetting these losses to create a net loss of about 200 ha. These new mangroves have mainly appeared in the southern bay region and the bay islands, particularly on the landward edge of existing mangroves. In addition, spatial patterns and species composition of mangrove patches have changed. The pattern metrics analysis provided an overview of mangrove distribution and change in the form of single metric values, while the change detection analysis gave a more detailed and spatially explicit description of change. An analysis of the effects of spatial scales on the pattern metrics indicated that they were relatively insensitive to scale at spatial resolutions less than 50 m, but that most metrics became sensitive at coarser resolutions, a finding which has implications for mapping of mangroves based on remotely sensed data. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Soil erosion is a major environmental issue in Australia. It reduces land productivity and has off-site effects of decreased water quality. Broad-scale spatially distributed soil erosion estimation is essential for prioritising erosion control programs and as a component of broader assessments of natural resource condition. This paper describes spatial modelling methods and results that predict sheetwash and rill erosion over the Australian continent using the revised universal soil loss equation (RUSLE) and spatial data layers for each of the contributing environmental factors. The RUSLE has been used before in this way but here we advance the quality of estimation. We use time series of remote sensing imagery and daily rainfall to incorporate the effects of seasonally varying cover and rainfall intensity, and use new digital maps of soil and terrain properties. The results are compared with a compilation of Australian erosion plot data, revealing an acceptable consistency between predictions and observations. The modelling results show that: (1) the northern part of Australia has greater erosion potential than the south; (2) erosion potential differs significantly between summer and winter; (3) the average erosion rate is 4.1 t/ha. year over the continent and about 2.9 x 10(9) tonnes of soil is moved annually which represents 3.9% of global soil erosion from 5% of world land area; and (4) the erosion rate has increased from 4 to 33 times on average for agricultural lands compared with most natural vegetated lands.
Resumo:
Quantifying mass and energy exchanges within tropical forests is essential for understanding their role in the global carbon budget and how they will respond to perturbations in climate. This study reviews ecosystem process models designed to predict the growth and productivity of temperate and tropical forest ecosystems. Temperate forest models were included because of the minimal number of tropical forest models. The review provides a multiscale assessment enabling potential users to select a model suited to the scale and type of information they require in tropical forests. Process models are reviewed in relation to their input and output parameters, minimum spatial and temporal units of operation, maximum spatial extent and time period of application for each organization level of modelling. Organizational levels included leaf-tree, plot-stand, regional and ecosystem levels, with model complexity decreasing as the time-step and spatial extent of model operation increases. All ecosystem models are simplified versions of reality and are typically aspatial. Remotely sensed data sets and derived products may be used to initialize, drive and validate ecosystem process models. At the simplest level, remotely sensed data are used to delimit location, extent and changes over time of vegetation communities. At a more advanced level, remotely sensed data products have been used to estimate key structural and biophysical properties associated with ecosystem processes in tropical and temperate forests. Combining ecological models and image data enables the development of carbon accounting systems that will contribute to understanding greenhouse gas budgets at biome and global scales.
Resumo:
This book chapter represents a synthesis of the work which started in my PhD and which has been the conceptual basis for all of my research since 1993. The chapter presents a method for scientists and managers to use for selecting the type of remotely sensed data to use to meet their information needs associated with a mapping, monitoring or modelling application. The work draws on results from several of my ARC projects, CRC Rainforest and Coastal projects and theses of P.Scarth , K.Joyce and C.Roelfsema.
Resumo:
Land related information about the Earth's surface is commonIJ found in two forms: (1) map infornlation and (2) satellite image da ta. Satellite imagery provides a good visual picture of what is on the ground but complex image processing is required to interpret features in an image scene. Increasingly, methods are being sought to integrate the knowledge embodied in mop information into the interpretation task, or, alternatively, to bypass interpretation and perform biophysical modeling directly on derived data sources. A cartographic modeling language, as a generic map analysis package, is suggested as a means to integrate geographical knowledge and imagery in a process-oriented view of the Earth. Specialized cartographic models may be developed by users, which incorporate mapping information in performing land classification. In addition, a cartographic modeling language may be enhanced with operators suited to processing remotely sensed imagery. We demonstrate the usefulness of a cartographic modeling language for pre-processing satellite imagery, and define two nerv cartographic operators that evaluate image neighborhoods as post-processing operations to interpret thematic map values. The language and operators are demonstrated with an example image classification task.