61 resultados para Regulació cel·lular


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental and theoretical studies have shown the importance of stochastic processes in genetic regulatory networks and cellular processes. Cellular networks and genetic circuits often involve small numbers of key proteins such as transcriptional factors and signaling proteins. In recent years stochastic models have been used successfully for studying noise in biological pathways, and stochastic modelling of biological systems has become a very important research field in computational biology. One of the challenge problems in this field is the reduction of the huge computing time in stochastic simulations. Based on the system of the mitogen-activated protein kinase cascade that is activated by epidermal growth factor, this work give a parallel implementation by using OpenMP and parallelism across the simulation. Special attention is paid to the independence of the generated random numbers in parallel computing, that is a key criterion for the success of stochastic simulations. Numerical results indicate that parallel computers can be used as an efficient tool for simulating the dynamics of large-scale genetic regulatory networks and cellular processes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agents make up an important part of game worlds, ranging from the characters and monsters that live in the world to the armies that the player controls. Despite their importance, agents in current games rarely display an awareness of their environment or react appropriately, which severely detracts from the believability of the game. Some games have included agents with a basic awareness of other agents, but they are still unaware of important game events or environmental conditions. This paper presents an agent design we have developed, which combines cellular automata for environmental modeling with influence maps for agent decision-making. The agents were implemented into a 3D game environment we have developed, the EmerGEnT system, and tuned through three experiments. The result is simple, flexible game agents that are able to respond to natural phenomena (e.g. rain or fire), while pursuing a goal.