156 resultados para Quasi-Bilateral Generating Function
Resumo:
Calcium-activated potassium channels are a large family of potassium channels that are found throughout the central nervous system and in many other cell types. These channels are activated by rises in cytosolic calcium largely in response to calcium influx via voltage-gated calcium channels that open during action potentials. Activation of these potassium channels is involved in the control of a number of physiological processes from the firing properties of neurons to the control of transmitter release. These channels form the target for modulation for a range of neurotransmitters and have been implicated in the pathogenesis of neurological and psychiatric disorders. Here the authors summarize the varieties of calcium-activated potassium channels present in central neurons and their defining molecular and biophysical properties.
Resumo:
Cortical activity associated with voluntary movement is shifted from medial to lateral premotor areas in Parkinson's disease. This occurs bilaterally, even for unilateral movements. We have used both EEG and MEG to further investigate medial and lateral premotor activity in patients with hemi-Parkinson's disease, in whom basal ganglia impairment is most pronounced in one hemisphere. The CNV, recorded from 21 scalp positions in a Go/NoGo task, was maximal over central medial regions in control subjects. For hemi-Parkinson's disease subjects, activity was shifted more frontally, reduced in the midline and lateralised towards the side of greatest basal ganglia impairment. With 143 channel whole-scalp magneto encephalography (MEG) we are further examining asymmetries in supplementary motor/premotor cortical activity prior to self-paced voluntary movement. In preliminary results, one hemi-Parkinson's disease patient with predominantly left-side symptoms showed strong medial activity consistent with a dominant source in the left supplementary motor area (SMA). Three patients showed little medial activity, but early bilateral sources within lateral premotor cortex. Results suggest greater involvement of lateral premotor rather than the SMA prior to movement in Parkinson's disease and provide evidence for asymmetric function of the SMA in hemi- Parkinson's disease, with reduced activity on the side of greatest basal ganglia deficit.
Resumo:
The initiation of graft vs. host disease (GVHD) after stem cell transplantation is dependent on direct antigen presentation by host antigen presenting cells (APC) while the effect of indirect antigen presentation by donor APC is unknown. We have studied the role of indirect antigen presentation in allogenic responses by adding populations of cytokine-expanded donor APC to haematopoietic grafts that would otherwise induce lethal GVHD. Progenipoietin-1 (a synthetic G-CSF/Flt-3 L molecule) and G-CSF expanded myeloid DC, plasmacytoid DC and a novel granulocyte-monocyte precursor population (GM) that differentiate into class IIpos, CD80/CD86pos, CD40neg APC during GVHD. Whereas addition of plasmacytoid and myeloid donor DC augmented GVHD, GM cells induced transplant tolerance via MHC class II restricted generation of IL-10-secreting regulatory T cells. Thus a population of cytokine expanded granulocyte-monocyte precursors function as regulatory antigen presenting cells, suggesting that G-CSF derivatives may have application in disorders characterised by a loss of self-tolerance.
Resumo:
Duchenne muscular dystrophy (DMD) is a fatal neuromuscular condition affecting approximately one in 3500 live male births resulting from the lack of the myocyte protein dystrophin. The absence of dystrophin in cardiac myocytes is associated with calcium overload which in turn activates calcium-dependent proteolytic enzymes contributing to congestive heart failure, muscle necrosis and fibrosis. To date, the basis for the calcium overload has not been determined. Since L-type calcium channels are a major mediator of calcium influx we determined their potential contribution to the calcium overload. Male muscular dystrophy (mdx) mice and control C57BL10ScSn (C57) mice aged 12– 16 weeks were used in all experiments. In tissue bath studies, isolated contracting left atria from mdx revealed a reduced potency to the dihydropyridine (DHP) agonist BayK8644 and antagonist nifedipine (P < 0.05). Similarly, radioligand binding studies using the DHP antagonist [3H]-PN 200-110 showed a reduced potency (P < 0.05) in isolated membranes, associated with an increased receptor density (P < 0.05). The increased receptor density was supported by RT-PCR experiments revealing increased RNAfor the DHP receptor. Patch clamp studies revealed the presence of a diltiazem sensitive calcium current that showed delayed inactivation in isolated mdx myocytes (P < 0.01). In conclusion, the increased number of DHP binding sites and the delay in L-type current inactivation may both contribute to increased calcium influx and hence calcium overload in the dystrophin deficient mdx cardiac myocytes.
Resumo:
Ozone is a major air pollutant with adverse health effects which exhibit marked inter-individual variability. In mice, regions of genetic linkage with ozone-induced lung injury include the tumor necrosis factor-alpha (TNF), lymphotoxin-alpha (LTA), Toll-like receptor 4 (TLR4), superoxide dismutase (SOD2), and glutathione peroxidase (GPX1) genes. We genotyped polymorphisms in these genes in 51 individuals who had undergone ozone challenge. Mean change in FEV1 with ozone challenge, as a percentage of baseline, was -3% in TNF -308G/A or A/A individuals, compared with -9% in G/G individuals (p = 0.024). When considering TNF haplotypes, the smallest change in FEV1 with ozone exposure was associated with the TNF haplotype comprising LTA +252G/TNF -1031T/TNF -308A/TNF -238G. This association remained statistically significant after correction for age, sex, disease, and ozone concentration (p = 0.047). SOD2 or GPX1 genotypes were not associated with lung function, and the TLR4 polymorphism was too infrequent to analyze. The results of this study support TNF as a genetic factor for susceptibility to ozone-induced changes in lung function in humans, and has potential implications for stratifying health risks of air pollution.
Resumo:
IL-1 is a key proinflammatory driver of several autoimmune diseases including juvenile inflammatory arthritis, diseases with mutations in the NALP/cryopyrin complex and Crohn’s disease, and is genetically or clinically associated with many others. IL-1 is a pleiotropic proinflammatory cytokine; however the mechanisms by which increased IL-1 signaling promotes autoreactive T cell activity are not clear. Here we show that autoimmune-prone NOD and IL-1 receptor antagonist-deficient C57BL/6 mice both produce high levels of IL-1, which drives autoreactive effector cell expansion. IL-1beta drives proliferation and cytokine production by CD4+CD25+FoxP3– effector/memory T cells, attenuates CD4+CD25+FoxP3+ regulatory T cell function, and allows escape of CD4+CD25– autoreactive effectors from suppression. Thus, inflammation or constitutive overexpression of IL-1beta in a genetically predisposed host can promote autoreactive effector T cell expansion and function, which attenuates the ability of regulatory T cells to maintain tolerance to self.
Resumo:
Diverse infectious and inflammatory environmental triggers, through unknown mechanisms, initiate autoimmune disease in genetically predisposed individuals. Here we show that IL-1b, a key cytokine mediator of the inflammatory response, suppresses CD25+CD4+ regulatory T cell function. Surprisingly, suppression by IL-1b occurs only where antigen is presented simultaneously to CD25+CD4+ T cells and to CD25CD4+ antigen-specific effector T cells. Further, NOD mice show an intrinsic over-production of IL-1 that contributes to reduced CD25+CD4+ regulatory T cell function. Thus, inflammation or constitutive over-expression of IL-1b in a genetically predisposed host can initiate a positive feedback loop licensing autoantigen-specific effector cells to inhibit the regulatory T cells maintaining tolerance to self.
Resumo:
Sulfate is required for detoxification of xenobiotics such as acetaminophen (APAP), a leading cause of liver failure in humans. The NaS1 sulfate transporter maintains blood sulfate levels sufficiently high for sulforiation reactions to work effectively for drug detoxification. In the present study, we identified two loss-of-function polymorphisms in the human NaS1 gene and showed the Nas1-null mouse to be hypersensitive to APAP hepatotoxicity. APAP treatment led to increased liver damage and decreased hepatic glutathione levels in the hyposulfatemic Nas1-null mice compared with that in normosulfatemic wild-type mice. Analysis of urinary APAP metabolites revealed a significantly lower ratio of APAP-sulfate to APAP-glucuronide in the Nas1-null mice. These results suggest hyposulfatemia increases sensitivity to APAP-induced hepatotoxicity by decreasing the sulfonation capacity to metabolize APAP. In conclusion, the results of this study highlight the importance of plasma sulfate level as a key modulator of acetaminophen metabolism and suggest that individuals with reduced NaS1 sulfate transporter function would be more sensitive to hepatotoxic agents.
Resumo:
Objective: Individuals with autism spectrum disorders typically have normal visuospatial abilities but impaired executive functioning, particularly in abilities related to working memory and attention. The aim of this study was to elucidate the functioning of frontoparietal networks underlying spatial working memory processes during mental rotation in persons with autism spectrum disorders. Method: Seven adolescent males with normal IQ with an autism spectrum disorder and nine age- and IQ-matched male comparison subjects underwent functional magnetic resonance imaging scans while performing a mental rotation task. Results: The autism spectrum disorders group showed less activation in lateral and medial premotor cortex, dorsolateral prefrontal cortex, anterior cingulate gyrus, and caudate nucleus. Conclusions: The finding of less activation in prefrontal regions but not in parietal regions supports a model of dysfunction of frontostriatal networks in autism spectrum disorders.
Resumo:
Minimal perfect hash functions are used for memory efficient storage and fast retrieval of items from static sets. We present an infinite family of efficient and practical algorithms for generating order preserving minimal perfect hash functions. We show that almost all members of the family construct space and time optimal order preserving minimal perfect hash functions, and we identify the one with minimum constants. Members of the family generate a hash function in two steps. First a special kind of function into an r-graph is computed probabilistically. Then this function is refined deterministically to a minimal perfect hash function. We give strong theoretical evidence that the first step uses linear random time. The second step runs in linear deterministic time. The family not only has theoretical importance, but also offers the fastest known method for generating perfect hash functions.