276 resultados para Quantum Dynamics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider continuous observation of the nonlinear dynamics of single atom trapped in an optical cavity by a standing wave with intensity modulation. The motion of the atom changes the phase of the field which is then monitored by homodyne detection of the output field. We show that the conditional Hilbert space dynamics of this system, subject to measurement-induced perturbations, depends strongly on whether the corresponding classical dynamics is regular or chaotic. If the classical dynamics is chaotic, the distribution of conditional Hilbert space vectors corresponding to different observation records tends to be orthogonal. This is a characteristic feature of hypersensitivity to perturbation for quantum chaotic systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I shall discuss the quantum and classical dynamics of a class of nonlinear Hamiltonian systems. The discussion will be restricted to systems with one degree of freedom. Such systems cannot exhibit chaos, unless the Hamiltonians are time dependent. Thus we shall consider systems with a potential function that has a higher than quadratic dependence on the position and, furthermore, we shall allow the potential function to be a periodic function of time. This is the simplest class of Hamiltonian system that can exhibit chaotic dynamics. I shall show how such systems can be realized in atom optics, where very cord atoms interact with optical dipole potentials of a far-off resonance laser. Such systems are ideal for quantum chaos studies as (i) the energy of the atom is small and action scales are of the order of Planck's constant, (ii) the systems are almost perfectly isolated from the decohering effects of the environment and (iii) optical methods enable exquisite time dependent control of the mechanical potentials seen by the atoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In quantum measurement theory it is necessary to show how a, quantum source conditions a classical stochastic record of measured results. We discuss mesoscopic conductance using quantum stochastic calculus to elucidate the quantum nature of the measurement taking place in these systems. To illustrate the method we derive the current fluctuations in a two terminal mesoscopic circuit with two tunnel barriers containing a single quasi bound state on the well. The method enables us to focus on either the incoming/ outgoing Fermi fields in the leads, or on the irreversible dynamics of the well state itself. We show an equivalence between the approach of Buttiker and the Fermi quantum stochastic calculus for mesoscopic systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since dilute Bose gas condensates were first experimentally produced, the Gross-Pitaevskii equation has been successfully used as a descriptive tool. As a mean-field equation, it cannot by definition predict anything about the many-body quantum statistics of condensate. We show here that there are a class of dynamical systems where it cannot even make successful predictions about the mean-field behavior, starting with the process of evaporative cooling by which condensates are formed. Among others are parametric processes, such as photoassociation and dissociation of atomic and molecular condensates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We perform a quantum-mechanical analysis of the pendular cavity, using the positive-P representation, showing that the quantum state of the moving mirror, a macroscopic object, has noticeable effects on the dynamics. This system has previously been proposed as a candidate for the quantum-limited measurement of small displacements of the mirror due to radiation pressure, for the production of states with entanglement between the mirror and the field, and even for superposition states of the mirror. However, when we treat the oscillating mirror quantum mechanically, we find that it always oscillates, has no stationary steady state, and exhibits uncertainties in position and momentum which are typically larger than the mean values. This means that previous linearized fluctuation analyses which have been used to predict these highly quantum states are of limited use. We find that the achievable accuracy in measurement is fat, worse than the standard quantum limit due to thermal noise, which, for typical experimental parameters, is overwhelming even at 2 mK

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report quantum chaos phenomena in the atomic gravitational cavity. We consider the reflection of cold atoms from a temporally modulated evanescent wave. In the globally chaotic regime, for small modulation, the squared energy distribution as a function of time demonstrates dynamical localization. However, for larger modulation delocalization occurs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the theory of quantum fluctuations in non-equilibrium systems having large critical fluctuations. This allows us to treat the limits imposed by nonlinearities to quantum squeezing and noise reduction, and also to envisage future tests of quantum theory in regions of macroscopic quantum fluctuations. A long-term objective of this research is to identify suitable physical systems in which macroscopic 'Schrodinger cat'-like behaviour may be observed. We investigate two systems in particular of much current experimental interest, namely the degenerate parametric oscillator near threshold, and the evaporatively cooled (BEC). We compare the results obtained in the positive-P representation, as a fully quantum mechanical calculation, with the truncated Wigner phase space equation, also known as semi-classical theory. We show when these results agree and differ in calculations taken beyond the linearized approximation. In the region where the largest quantum fluctuations and Schrodinger cat-like behaviour might be expected, we find that the quantum predictions correspond very closely to the semi-classical theory. Nature abhors observing a Schrodinger car.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We obtain the finite-temperature unconditional master equation of the density matrix for two coupled quantum dots (CQD's) when one dot is subjected to a measurement of its electron occupation number using a point contact (PC). To determine how the CQD system state depends on the actual current through the PC device, we use the so-called quantum trajectory method to derive the zero-temperature conditional master equation. We first treat the electron tunneling through the PC barrier as a classical stochastic point process (a quantum-jump model). Then we show explicitly that our results can be extended to the quantum-diffusive limit when the average electron tunneling rate is very large compared to the extra change of the tunneling rate due to the presence of the electron in the dot closer to the PC. We find that in both quantum-jump and quantum-diffusive cases, the conditional dynamics of the CQD system can be described by the stochastic Schrodinger equations for its conditioned state vector if and only if the information carried away from the CQD system by the PC reservoirs can be recovered by the perfect detection of the measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Starting from the two-mode Bose-Hubbard model, we derive an exact version of the standard Mathieu equation governing the wave function of a Josephson junction. For a finite number of particles N, we find an additional cos 2 phi term in the potential. We also find that the inner product in this representation is nonlocal in phi. Our model exhibits phenomena, such as pi oscillations, which are not found in the standard phase model, but have been predicted from Gross-Pitaevskii mean-field theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the conditional and unconditional dynamics of two coupled quantum dots when one dot is subjected to a measurement of its occupation number by coupling it to a third readout dot via the Coulomb interaction. The readout dot is coupled to source and drain leads under weak bias, and a tunnel current flows through a single bound state when energetically allowed. The occupation of the quantum dot near the readout dot shifts the bound state of the readout dot from a low conducting state to a high conducting state. The measurement is made by continuously monitoring the tunnel current through the readout dot. We show that there is a difference between the time scale for the measurement-induced decoherence between the localized states of the dots, and the time scale on which the system becomes localized due to the measurement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We establish a connection between the simple harmonic oscillator and a two-level atom interacting with resonant, quantized cavity and strong driving fields, which suggests an experiment to measure the harmonic-oscillator's probability distribution function. To achieve this, we calculate the Autler-Townes spectrum by coupling the system to a third level. We find that there are two different regions of the atomic dynamics depending on the ratio of the: Rabi frequency Omega (c) of the cavity field to that of the Rabi frequency Omega of the driving field. For Omega (c)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the center-of-mass motion of cold atoms in a standing amplitude modulated laser field. We use a simple model to explain the momentum distribution of the atoms after any distinct number of modulation cycles. The atoms starting near a classical phase-space resonance move slower than we would expect classically. We explain this by showing that for a wave packet on the classical resonances we can replace the complicated dynamics in the quantum Liouville equation in phase space by its classical dynamics with a modified potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We generalize the basic concepts of the positive-P and Wigner representations to unstable quantum-optical systems that are based on nonorthogonal quasimodes. This lays the foundation for a quantum description of such systems, such as, for example an unstable cavity laser. We compare both representations by calculating the tunneling times for an unstable resonator optical parametric oscillator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the process of photodissociation of a molecular Bose-Einstein condensate as a potential source of strongly correlated twin atomic beams. We show that the two beams can possess nearly perfect quantum squeezing in their relative numbers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an efficient and robust method for calculating state-to-state reaction probabilities utilising the Lanczos algorithm for a real symmetric Hamiltonian. The method recasts the time-independent Artificial Boundary Inhomogeneity technique recently introduced by Jang and Light (J. Chem. Phys. 102 (1995) 3262) into a tridiagonal (Lanczos) representation. The calculation proceeds at the cost of a single Lanczos propagation for each boundary inhomogeneity function and yields all state-to-state probabilities (elastic, inelastic and reactive) over an arbitrary energy range. The method is applied to the collinear H + H-2 reaction and the results demonstrate it is accurate and efficient in comparison with previous calculations. (C) 2002 Elsevier Science B.V. All rights reserved.