189 resultados para Primary Sensory Neurons
Resumo:
The glycine receptor chloride channel (GlyR) is a member of the nicotinic acetylcholine receptor family of ligand-gated ion channels. Functional receptors of this family comprise five subunits and are important targets for neuroactive drugs. The GlyR is best known for mediating inhibitory neurotransmission in the spinal cord and brain stem, although recent evidence suggests it may also have other physiological roles, including excitatory neurotransmission in embryonic neurons. To date, four alpha-subunits (alpha1 to alpha4) and one beta-subunit have been identified. The differential expression of subunits underlies a diversity in GlyR pharmacology. A developmental switch from alpha2 to alpha1beta is completed by around postnatal day 20 in the rat. The beta-subunit is responsible for anchoring GlyRs to the subsynaptic cytoskeleton via the cytoplasmic protein gephyrin. The last few years have seen a surge in interest in these receptors. Consequently, a wealth of information has recently emerged concerning Glyl? molecular structure and function. Most of the information has been obtained from homomeric alpha1 GlyRs, with the roles of the other subunits receiving relatively little attention. Heritable mutations to human GlyR genes give rise to a rare neurological disorder, hyperekplexia (or startle disease). Similar syndromes also occur in other species. A rapidly growing list of compounds has been shown to exert potent modulatory effects on this receptor. Since GlyRs are involved in motor reflex circuits of the spinal cord and provide inhibitory synapses onto pain sensory neurons, these agents may provide lead compounds for the development of muscle relaxant and peripheral analgesic drugs.
Resumo:
Insulin-like growth factor-I (IGF-I) has multiple effects within the developing nervous system but its role in neurogenesis in the adult nervous system is less clear. The adult olfactory mucosa is a site of continuing neurogenesis that expresses IGF-I, its receptor and its binding proteins. The aim of the present study was to investigate the roles of IGF-I in regulating proliferation and differentiation in the olfactory mucosa. The action of IGF-I was assayed in serum-free culture combined with bromodeoxyuridine-labelling of proliferating cells and immunochemistry for specific cell types. IGF-I and its receptor were expressed by globose basal cells (the neuronal precursor) and by olfactory neurons. IGF-I reduced the numbers of proliferating neuronal precursors, induced their differentiation into neurons and promoted morphological differentiation of neurons. The evidence suggests that IGF-I is an autocrine and/or paracrine signal that induces neuronal precursors to differentiate into olfactory sensory neurons. These effects appear to be similar to the cellular effects of IGF-I in the developing nervous system.
Resumo:
The basis for the neuroprotectant effect of D-mannitol in reducing the sensory neurological disturbances seen in ciguatera poisoning, is unclear. Pacific ciguatoxin-1 (P-CTX-1), at a concentration 10 nM, caused a statistically significant swelling of rat sensory dorsal root ganglia (DRG) neurons that was reversed by hyperosmolar 50 MM D-mannitol. However, using electron paramagnetic resonance (EPR) spectroscopy, it was found that P-CTX-1 failed to generate hydroxyl free radicals at concentrations of toxin that caused profound effects on neuronal excitability. Whole-cell patch-clamp recordings from DRG neurons revealed that both hyper- and iso-osmolar 50 MM D-mannitol prevented the membrane depolarisation and repetitive firing of action potentials induced by P-CTX-1. In addition, both hyper- and iso-osmolar 50 MM D-mannitol prevented the hyperpolarising shift in steady-state inactivation and the rise in leakage current through tetrodotoxin (TTX)-sensitive Na-v channels, as well as the increased rate of recovery from inactivation of TTX-resistant Nav channels induced by P-CTX-1. D-Mannitol also reduced, but did not prevent, the inhibition of peak TTX-sensitive and TTX-resistant I-Na amplitude by P-CTX-1. Additional experiments using hyper- and isoosmolar D-sorbitol, hyperosmolar sucrose and the free radical scavenging agents Trolox (R) and L-ascorbic acid showed that these agents, unlike D-mannitol, failed to prevent the effects of P-CTX-1 on spike electrogenesis and Na-v channel gating. These selective actions of D-mannitol indicate that it does not act purely as an osmotic agent to reduce swelling of nerves, but involves a more complex action dependent on the Nav channel subtype, possibly to alter or reduce toxin association. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Tertiapin, a short peptide from honey bee venom, has been reported to specifically block the inwardly rectifying K+ (Kir) channels, including G protein-coupled inwardly rectifying potassium channel (GIRK) 1 + GIRK4 heteromultimers and ROMK1 homomultimers. In the present study, the effects of a stable and functionally similar derivative of tertiapin, tertiapin-Q, were examined on recombinant human voltage-dependent Ca2+-activated large conductance K+ channel (BK or MaxiK; alpha-subunit or hSlo1 homomultimers) and mouse inwardly rectifying GIRK1 + GIRK2 (i.e., Kir3.1 and Kir3.2) heteromultimeric K+ channels expressed in Xenopus oocytes and in cultured newborn mouse dorsal root ganglion (DRG) neurons. In two-electrode voltage-clamped oocytes, tertiapin-Q (1-100 nM) inhibited BK-type K+ channels in a use- and concentration-dependent manner. We also confirmed the inhibition of recombinant GIRK1 + GIRK2 heteromultimers by tertiapin-Q, which had no effect on endogenous depolarization- and hyperpolarization-activated currents sensitive to extracellular divalent cations (Ca2+, Mg2+, Zn2+, and Ba2+) in defolliculated oocytes. In voltage-clamped DRG neurons, tertiapin-Q voltage- and use-dependently inhibited outwardly rectifying K+ currents, but Cs+-blocked hyperpolarization-activated inward currents including I-H were insensitive to tertiapin-Q, baclofen, barium, and zinc, suggesting absence of functional GIRK channels in the newborn. Under current-clamp conditions, tertiapin-Q blocked the action potential after hyperpolarization (AHP) and increased action potential duration in DRG neurons. Taken together, these results demonstrate that the blocking actions of tertiapin-Q are not specific to Kir channels and that the blockade of recombinant BK channels and native neuronal AHP currents is use-dependent. Inhibition of specific types of Kir and voltage-dependent Ca2+-activated K+ channels by tertiapin-Q at nanomolar range via different mechanisms may have implications in pain physiology and therapy.
Resumo:
Background: The development of nervous systems involves reciprocal interactions between neurons and glia. In the Drosophila olfactory system, peripheral glial cells arise from sensory lineages specified by the basic helix- loop- helix transcription factor, Atonal. These glia wrap around the developing olfactory axons early during development and pattern the three distinct fascicles as they exit the antenna. In the moth Manduca sexta, an additional set of central glia migrate to the base of the antennal nerve where axons sort to their glomerular targets. In this work, we have investigated whether similar types of cells exist in the Drosophila antenna. Results: We have used different P( Gal4) lines to drive Green Fluorescent Protein ( GFP) in distinct populations of cells within the Drosophila antenna. Mz317:: GFP, a marker for cell body and perineural glia, labels the majority of peripheral glia. An additional similar to 30 glial cells detected by GH146:: GFP do not derive from any of the sensory lineages and appear to migrate into the antenna from the brain. Their appearance in the third antennal segment is regulated by normal function of the Epidermal Growth Factor receptor and small GTPases. We denote these distinct populations of cells as Mz317- glia and GH146- glia respectively. In the adult, processes of GH146- glial cells ensheath the olfactory receptor neurons directly, while those of the Mz317- glia form a peripheral layer. Ablation of GH146- glia does not result in any significant effects on the patterning of the olfactory receptor axons. Conclusion: We have demonstrated the presence of at least two distinct populations of glial cells within the Drosophila antenna. GH146- glial cells originate in the brain and migrate to the antenna along the newly formed olfactory axons. The number of cells populating the third segment of the antenna is regulated by signaling through the Epidermal Growth Factor receptor. These glia share several features of the sorting zone cells described in Manduca.
Resumo:
In this paper, we review evidence from comparative studies of primate cortical organization, highlighting recent findings and hypotheses that may help us to understand the rules governing evolutionary changes of the cortical map and the process of formation of areas during development. We argue that clear unequivocal views of cortical areas and their homologies are more likely to emerge for 'core' fields, including the primary sensory areas, which are specified early in development by precise molecular identification steps. In primates, the middle temporal area is probably one of these primordial cortical fields. Areas that form at progressively later stages of development correspond to progressively more recent evolutionary events, their development being less firmly anchored in molecular specification. The certainty with which areal boundaries can be delimited, and likely homologies can be assigned, becomes increasingly blurred in parallel with this evolutionary/developmental sequence. For example, while current concepts for the definition of cortical areas have been vindicated in allowing a clarification of the organization of the New World monkey 'third tier' visual cortex (the third and dorsomedial areas, V3 and DM), our analyses suggest that more flexible mapping criteria may be needed to unravel the organization of higher-order visual association and polysensory areas.
Resumo:
Ciguatoxins are cyclic polyether toxins, derived from marine dinoflagellates, which are responsible for the symptoms of ciguatera poisoning. Ingestion of tropical and subtropical fin fish contaminated by ciguatoxins results in an illness characterised by neurological, cardiovascular and gastrointestinal disorders. The pharmacology of ciguatoxins is characterised by their ability to cause persistent activation of voltage-gated sodium channels, to increase neuronal excitability and neurotransmitter release, to impair synaptic vesicle recycling, and to cause cell swelling. It is these effects, in combination with an action to block voltage-gated potassium channels at high doses, which are believed to underlie the complex of symptoms associated with ciguatera. This review examines the sources, structures and pharmacology of ciguatoxins. In particular, attention is placed on their cellular modes of actions to modulate voltage-gated ion channels and other Na+-dependent mechanisms in numerous cell types and to current approaches for detection and treatment of ciguatera.
Resumo:
Voltage-gated sodium channels (VGSCs) play an important role in neuronal excitability. Regulation of VGSC activity is a complex phenomenon that occurs at multiple levels in the cell, including transcriptional regulation, post-translational modification and membrane insertion and retrieval. Multiple VGSC subtypes exist that vary in their biophysical and pharmacological properties and tissue distribution. Any alteration of the VGSC subtype profile of a neuron or the mechanisms that regulate VGSC activity can cause significant changes in neuronal excitability. Inflammatory and neuropathic pain states are characterised by alterations in VGSC subtype composition and activity in sensory neurons. This review focuses on the VGSC subtypes involved in such pain states. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We show that the mutant Huntington's disease (HD) protein (mhtt) specifically inhibits endocytosis in primary striatal neurons. Unexpectedly, mhtt does not inhibit clathrin-dependent endocytosis as was anticipated based on known interacting partners. Instead, inhibition occurs through a non-clathrin, caveolar-related pathway. Expression of mhtt inhibited internalization of BODIPY-lactosylceramide (LacCer), which is internalized by a caveolar-related mechanism. In contrast, endocytosis of Alexa Fluor 594-transferrin (Tfn) and epidermal growth factor, internalized through clathrin pathway, was unaffected by mhtt expression. Caveolin-1 (cav1), the major structural protein of caveolae binds cholesterol and is responsible for its trafficking inside cells. Mhtt interacts with cav-1 and caused a striking accumulation of intracellular cholesterol. Cholesterol accumulated in cultured neurons expressing mhtt in vitro and in brains of mhtt-expressing animals in vivo, and was observed after induction of mhtt expression in PC-12 cell lines. The accumulation occurred only when mhtt and cav1 were simultaneously expressed in cells. Knockdown of cav1 in mhtt-expressing neurons blocked cholesterol accumulation and restored LacCer endocytosis. Thus, mhtt and cav1 functionally interact to cause both cellular defects. These data provide the first direct link between mhtt and caveolar-related endocytosis and also suggest a possible mechanism for HD neurotoxicity where cholesterol homeostasis is perturbed.
Resumo:
Spontaneous and tone-evoked changes in light reflectance were recorded from primary auditory cortex (A1) of anesthetized cats (barbiturate induction, ketamine maintenance). Spontaneous 0.1-Hz oscillations of reflectance of 540- and 690-nm light were recorded in quiet. Stimulation with tone pips evoked localized reflectance decreases at 540 nm in 3/10 cats. The distribution of patches activated by tones of different frequencies reflected the known tonotopic organization of auditory cortex. Stimulus-evoked reflectance changes at 690 nm were observed in 9/10 cats but lacked stimulus-dependent topography. In two experiments, stimulus-evoked optical signals at 540 nm were compared with multiunit responses to the same stimuli recorded at multiple sites. A significant correlation (P < 0.05) between magnitude of reflectance decrease and multiunit response strength was evident in only one of five stimulus conditions in each experiment. There was no significant correlation when data were pooled across all stimulus conditions in either experiment. In one experiment, the spatial distribution of activated patches, evident in records of spontaneous activity at 540 nm, was similar to that of patches activated by tonal stimuli. These results suggest that local cerebral blood volume changes reflect the gross tonotopic organization of A1 but are not restricted to the sites of spiking neurons.
Resumo:
Primary olfactory axons expressing the same odorant receptor gene sort out and converge to fixed sites in the olfactory bulb. We examined the guidance of axons expressing the P2 odorant receptor when they were challenged with different cellular environments in vivo. In the mutant extratoes mouse, the olfactory bulb is lacking and is replaced by a fibrocellular mass. In these animals, primary olfactory axons form glomerular-like loci despite the absence of normal postsynaptic targets. P2 axons are able to sort out from other axons in this fibrocellular mass and converge to form loci of like axons. The sites of these loci along mediolateral and ventrodorsal axes were highly variable. Similar convergence was observed for larger subpopulations of axons expressing the same cell surface carbohydrates. The sorting out and convergence of like axons also occurred during regeneration following bulbectomy. Olfactory axon behaviour in these models demonstrates that sorting and convergence of axons are independent of the target, which instead provides distinct topographic cues for guidance. (C) 2003 Wiley-Liss, Inc.
Resumo:
Recent studies have revealed regional variation in the density and distribution of inhibitory neurons in different cortical areas, which are thought to reflect area-specific specializations in cortical circuitry. However, there are as yet few standardized quantitative data regarding how the inhibitory circuitry in prefrontal cortex (PFC), which is thought to be involved in executive functions such as cognition, emotion and decision making, compares to that in other cortical areas. Here we used immunohistochemical techniques to determine the density and distribution of parvalbumin (PV)-, calbindin (CB)-, and calretinin (CR)-immunoreactive (ir) neurons and axon terminals in the dorsolateral and orbital PFC of the owl monkey (Aotus trivirgatus), and compared them directly with data obtained using the same techniques in 11 different visual, somatosensory and motor areas. We found marked differences in the density of PV-ir, CB-ir, and CR-ir interneurons in several cortical areas. One hundred and twenty eight of all 234 possible between-area pairwise comparisons were significantly different. The density of specific subpopulations of these cells also varied among cortical areas, as did the density of axon terminals. Comparison of PFC with other cortical areas revealed that 40 of all 66 possible statistical comparisons of the density of PV-ir, CB-ir, and CR-ir cells were significantly different. We also found evidence for heterogeneity in the pattern of labeling of PV-ir, CB-ir, and CR-ir cells and axon terminals between the dorsolateral and orbital subdivisions of PFC. These data are likely to reflect basic differences in interneuron circuitry, which are likely to influence inhibitory function in the cortex. Copyright (C) 2003 S. Karger AG, Basel.
Resumo:
Bi-sensory striped arrays are described in owl and platypus that share some similarities with the other variant of bi-sensory striped array found in primate and carnivore striate cortex: ocular dominance columns. Like ocular dominance columns, the owl and platypus striped systems each involve two different topographic arrays that are cut into parallel stripes, and interdigitated, so that higher-order neurons can integrate across both arrays. Unlike ocular dominance stripes, which have a separate array for each eye, the striped array in the middle third of the owl tectum has a separate array for each cerebral hemisphere. Binocular neurons send outputs from both hemispheres to the striped array where they are segregated into parallel stripes according to hemisphere of origin. In platypus primary somatosensory cortex (SI), the two arrays of interdigitated stripes are derived from separate sensory systems in the bill, 40,000 electroreceptors and 60,000 mechanoreceptors. The stripes in platypus SI cortex produce bimodal electrosensory-mechanosensory neurons with specificity for the time-of-arrival difference between the two systems. This thunder-and-lightning system would allow the platypus to estimate the distance of the prey using time disparities generated at the bill between the earlier electrical wave and the later mechanical wave caused by the motion of benthic prey. The functional significance of parallel, striped arrays is not clear, even for the highly-studied ocular dominance system, but a general strategy is proposed here that is based on the detection of temporal disparities between the two arrays that can be used to estimate distance. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We quantified the morphology of over 350 pyramidal neurons with identified ipsilateral corticocortical projections to the primary (V1) and middle temporal (MT) visual areas of the marmoset monkey, following intracellular injection of Lucifer Yellow into retrogradely labelled cells. Paralleling the results of studies in which randomly sampled pyramidal cells were injected, we found that the size of the basal dendritic tree of connectionally identified cells differed between cortical areas, as did the branching complexity and spine density. We found no systematic relationship between dendritic tree structure and axon target or length. Instead, the size of the basal dendritic tree increased roughly in relation to increasing distance from the occipital pole, irrespective of the length of the connection or the cortical layer in which the neurons were located. For example, cells in the second visual area had some of the smallest and least complex dendritic trees irrespective of whether they projected to V1 or MT, while those in the dorsolateral area (DL) were among the largest and most complex. We also observed that systematic differences in spine number were more marked among V1-projecting cells than MT-projecting cells. These data demonstrate that the previously documented systematic differences in pyramidal cell morphology between areas cannot simply be attributed to variable proportions of neurons projecting to different targets, in the various areas. Moreover, they suggest that mechanisms intrinsic to the area in which neurons are located are strong determinants of basal dendritic field structure.