108 resultados para Plant products industry
Resumo:
Coal fired power generation will continue to provide energy to the world for the foreseeable future. However, this energy use is a significant contributor to increased atmospheric CO2 concentration and, hence, global warming. Capture and disposal Of CO2 has received increased R&D attention in the last decade as the technology promises to be the most cost effective for large scale reductions in CO2 emissions. This paper addresses CO2 transport via pipeline from capture site to disposal site, in terms of system optimization, energy efficiency and overall economics. Technically, CO2 can be transported through pipelines in the form of a gas, a supercritical. fluid or in the subcooled liquid state. Operationally, most CO2 pipelines used for enhanced oil recovery transport CO2 as a supercritical fluid. In this paper, supercritical fluid and subcooled liquid transport are examined and compared, including their impacts on energy efficiency and cost. Using a commercially available process simulator, ASPEN PLUS 10.1, the results show that subcooled liquid transport maximizes the energy efficiency and minimizes the Cost Of CO2 transport over long distances under both isothermal and adiabatic conditions. Pipeline transport of subcooled liquid CO2 can be ideally used in areas of cold climate or by burying and insulating the pipeline. In very warm climates, periodic refrigeration to cool the CO2 below its critical point of 31.1 degrees C, may prove economical. Simulations have been used to determine the maximum safe pipeline distances to subsequent booster stations as a function of inlet pressure, environmental temperature and ground level heat flux conditions. (c) 2005 Published by Elsevier Ltd.
Resumo:
Windrowed pyrethrum stems were air dried under a range of storage conditions to examine whether the current commercial practice of drying crop material is conducive to pyrethrins' degradation. Crop material was stored for up to 12 days in a commercial windrow, a shed receiving indirect light or a dark, 5 degrees C cool-room. Analysis of pyrethrins extracted from flowers of all treatments demonstrated that pyrethrins were not degrading in windrowed crops, plant material stored in the shed or in the 5 degrees C cool-room. The small differences obtained in pyrethrins content among the treatments can be explained by the natural variation in pyrethrins content of pyrethrum crops. The observation that the achenes were unchanged during this drying period supported the pyrethrins analysis. These results demonstrate that pyrethrins in planta do not degrade as rapidly as extracted pyrethrins. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The vital role that 'design of experiment' (DOE) plays when investigating dormancy, germination and potentially influential factors is discussed. The Taguchi analysis, developed by Dr. Genichi Taguchi, is a special application and analysis of the fractional factorial aimed at achieving maximum information from minimum effort and resources.
Resumo:
Geological sequestration of CO2 is a technically feasible and potentially economic option for significantly and safely reducing greenhouse gas emissions, with CO2 injection already practiced in Canada and the USA to enhance crude oil production. The Enhanced Coalbed Methane (ECBM) process is seen as the next most economical sequestration options. The authors estimate an incremental methane recovery factor from 20% to 50%, depending on coal rank and seam depth. Others have estimated the potential to increase worldwide CBM production, utilising ECBM, by 18 Trillion cubic meters, while simultaneously sequestering 345 Giga tonnes of CO2. This paper presents technical and economic factors to consider for developing a commercial ECBM project. Technical factors include: geostructural and hydrogeological issues, geochemical reactions, stressed and competitive sorption, counter-diffusion, effective and relative 4-D coal permeability and methane recovery levels. Key economic factors are injectant acquisition price, sale price of methane and the level of carbon credits.
Resumo:
CO2 Geosequestration is seen by many worldwide scientists and engineers as a leading prospective solution to the global warming problem arising from excessive CO2 and other greenhouse gas emissions. CO2 geosequestration in coal seams has two important strategic benefits: the process has an extremely low risk of leakage, due to the adsorbed state of the CO2 and the known reservoir context of essentially-zero leakage into which it is be injected; the second benefit arises from the valuable by-product, clean burning coalbed methane gas. This paper presents the authors’ experience, knowledge and perspective on what coal properties and engineering processes would favour implementing a demonstration or commercial CO2 storage-in-coal project, in Queensland, Australia. As such, it may be considered a template for screening studies to select the optimum coal seam reservoir, and for preliminary studies in designing the injection system and predicting production response to the technology. The paper concludes by examining the current knowledge gaps of CO2 geosequestration in coal, identifying further basic and applied research topics.