54 resultados para Parametric search
Resumo:
We develop a systematic theory of critical quantum fluctuations in the driven parametric oscillator. Our analytic results agree well with stochastic numerical simulations. We also compare the results obtained in the positive-P representation, as a fully quantum-mechanical calculation, with the truncated Wigner phase-space equation, also known as the semiclassical theory. We show when these results agree and differ in calculations taken beyond the linearized approximation. We find that the optimal broadband noise reduction occurs just above threshold. In this region where there are large quantum fluctuations in the conjugate variance and macroscopic quantum superposition states might be expected, we find that the quantum predictions correspond very closely to the semiclassical theory.
Resumo:
We develop a systematic theory of quantum fluctuations in the driven optical parametric oscillator, including the region near threshold. This allows us to treat the limits imposed by nonlinearities to quantum squeezing and noise reduction in this nonequilibrium quantum phase transition. In particular, we compute the squeezing spectrum near threshold and calculate the optimum value. We find that the optimal noise reduction occurs at different driving fields, depending on the ratio of damping rates. The largest spectral noise reductions are predicted to occur with a very high-Q second-harmonic cavity. Our analytic results agree well with stochastic numerical simulations. We also compare the results obtained in the positive-P representation, as a fully quantum-mechanical calculation, with the truncated Wigner phase-space equation, also known as the semiclassical theory.
Resumo:
We show how polarization measurements on the output fields generated by parametric down conversion will reveal a violation of multiparticle Bell inequalities, in the regime of both low- and high-output intensity. In this case, each spatially separated system, upon which a measurement is performed, is comprised of more than one particle. In view of the formal analogy with spin systems, the proposal provides an opportunity to test the predictions of quantum mechanics for spatially separated higher spin states. Here the quantum behavior possible even where measurements are performed on systems of large quantum (particle) number may be demonstrated. Our proposal applies to both vacuum-state signal and idler inputs, and also to the quantum-injected parametric amplifier as studied by De Martini The effect of detector inefficiencies is included, and weaker Bell-Clauser-Horne inequalities are derived to enable realistic tests of local hidden variables with auxiliary assumptions for the multiparticle situation.
Resumo:
We consider a mixture model approach to the regression analysis of competing-risks data. Attention is focused on inference concerning the effects of factors on both the probability of occurrence and the hazard rate conditional on each of the failure types. These two quantities are specified in the mixture model using the logistic model and the proportional hazards model, respectively. We propose a semi-parametric mixture method to estimate the logistic and regression coefficients jointly, whereby the component-baseline hazard functions are completely unspecified. Estimation is based on maximum likelihood on the basis of the full likelihood, implemented via an expectation-conditional maximization (ECM) algorithm. Simulation studies are performed to compare the performance of the proposed semi-parametric method with a fully parametric mixture approach. The results show that when the component-baseline hazard is monotonic increasing, the semi-parametric and fully parametric mixture approaches are comparable for mildly and moderately censored samples. When the component-baseline hazard is not monotonic increasing, the semi-parametric method consistently provides less biased estimates than a fully parametric approach and is comparable in efficiency in the estimation of the parameters for all levels of censoring. The methods are illustrated using a real data set of prostate cancer patients treated with different dosages of the drug diethylstilbestrol. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
The Commonwealth Government's Principles Based Review of the Law of Negligence recently recommended reforms aimed at limiting liability and damages arising from personal injury and death, in response to the growing perception that the current system of compensating personal injury had become financially unsustainable. Recent increases in medical liability and damages have eroded the confidence of doctors and their professional bodies, with fears of unprecedented desertion from and reduced recruitment into high risk areas, and one of the primary foci of the review concerned medical negligence. The article analyses proposals to redefine the principles necessary for the finding of negligence, against the terms of reference of the review. The article assumes that for the foreseeable future, Australia will persist with tort-based compensation for personal injury rather than developing a no-fault scheme. If the suggested changes to the fundamental principles of negligence are unlikely to reduce medical liability, greater attention might be given to the processes which come into play after the finding of negligence, where reform is more likely to benefit both plaintiffs and defendants.
Resumo:
This paper discusses a document discovery tool based on Conceptual Clustering by Formal Concept Analysis. The program allows users to navigate e-mail using a visual lattice metaphor rather than a tree. It implements a virtual. le structure over e-mail where files and entire directories can appear in multiple positions. The content and shape of the lattice formed by the conceptual ontology can assist in e-mail discovery. The system described provides more flexibility in retrieving stored e-mails than what is normally available in e-mail clients. The paper discusses how conceptual ontologies can leverage traditional document retrieval systems and aid knowledge discovery in document collections.
Resumo:
A further progress has been made in defining the ionosonde deduced equator (IDE) which characterises a latitudinal transition from the northern to southern hemisphere. It is now possible to define the global IDE location as the locus of the average position between geographic and geomagnetic equators. A more complete insight to the phenomenon of the third equator (i.e. after geographic and geomagnetic equators) was made possible due to availability of ionospheric height (h'F) data from three stations positioned close to the IDE in the American and the far-east sectors. The IDE ionospheric signature (or E-type signature), detected at these stations, consists of bi-annual h'F height increases. This signature however is not consistently observed during solar cycle and at times, particularly at sunspot minimum, a weak hemispheric signature is observed (i.e. the northern or southern hemisphere signature). In general, the height increase at the IDE are considerably smaller (by a factor of 4) than at other equatorial locations, indicating that the ionosphere at the IDE location becomes less disturbed. It is suggested that the equatorial longitudinal regions which can be associated with more consistent E-type signature are located in the central Pacific and at the east coast of America, close to the intersection points of the geographic and geomagnetic equators. (C) 2003 Elsevier Ltd. All rights reserved.