142 resultados para PATTERN FORMATION (EXPERIMENT)
Resumo:
Recent spectroscopic and morphological observational studies of galaxies around NGC 1399 in the Fornax Cluster have discovered several ultracompact dwarf galaxies with intrinsic sizes of similar to 100 pc and absolute B-band magnitudes ranging from -13 to -11 mag. In order to elucidate the origin of these enigmatic objects, we perform numerical simulations on the dynamical evolution of nucleated dwarf galaxies orbiting NGC 1399 and suffering from its strong tidal gravitational field. Adopting a plausible scaling relation for dwarf galaxies, we find that the outer stellar components of a nucleated dwarf are totally removed. This is due to them being tidally stripped over the course of several passages past the central region of NGC 1399. The nucleus, however, manages to survive. We also find that the size and luminosity of the remnant are similar to those observed for ultracompact dwarf galaxies, if the simulated precursor nucleated dwarf has a mass of similar to 10(8) M.. These results suggest that ultracompact dwarf galaxies could have previously been more luminous dwarf spheroidal or elliptical galaxies with rather compact nuclei.
Resumo:
The origin of M32, the closest compact elliptical galaxy (cE), is a long-standing puzzle of galaxy fort-nation in the Local Group. Our N-body/smoothed particle hydrodynamics simulations suggest a new scenario in which the strong tidal field of M31 can transform a spiral galaxy into a compact elliptical galaxy. As a low-luminosity spiral galaxy plunges into the central region of M31, most of the outer stellar and gaseous components of its disk are dramatically stripped as a result of M31's tidal field. The central bulge component, on the other hand, is just weakly influenced by the tidal field, owing to its compact configuration, and retains its morphology. M31's strong tidal field also induces rapid gas transfer to the central region, triggers a nuclear starburst, and consequently forms the central high-density and more metal-rich stellar populations with relatively young ages. Thus, in this scenario, M32 was previously the bulge of a spiral galaxy tidally interacting with M31 several gigayears ago. Furthermore, we suggest that cE's like M32 are rare, the result of both the rather narrow parameter space for tidal interactions that morphologically transform spiral galaxies into cE's and the very short timescale (less than a few times 10(9) yr) for cE's to be swallowed by their giant host galaxies (via dynamical friction) after their formation.
Resumo:
Three experiments examined the relationship between distinctiveness and self-schematicity. Experiment I revealed that people were more likely to be self-schematic in domains of strong performance when they felt distinct from family and peers in those domains. Experiments 2 and 3 extended this finding into the arena of stereotypes by demonstrating that people were more likely to be self-schematic in domains of strong performance when their performance was counterstereotypic rather than stereotypic. In particular, African Americans and women were more likely to be schematic for intelligence than Caucasians and men if they performed well academically, whereas Caucasians-especially men-were more likely than African Americans to be schematic for athletics if they performed well athletically. These results suggest that counterstereotypic behavior plays a uniquely powerful role in the development of the self-concept.
Resumo:
We present the results of a spectroscopic survey of 675 bright (16.5 < b(J) < 18) galaxies in a 6 degrees field centred on the Fornax cluster with the FLAIR-II spectrograph on the UK Schmidt Telescope. Three galaxy samples were observed: compact galaxies to search for new blue compact dwarfs, candidate M 32-like compact dwarf ellipticals, and a subset of the brightest known cluster members in order to study the cluster dynamics. We measured redshifts for 516 galaxies, of which 108 were members of the Fornax Cluster. Defining dwarf galaxies to be those with b(J) greater than or equal to 15 (M-B greater than or equal to - 16.5), there are a total of 62 dwarf cluster galaxies in our sample. Nine of these are new cluster members previously misidentified as background galaxies. The cluster dynamics show that the dwarf galaxies are still falling into the cluster whereas the giants are virialized. We classified the observed galaxies as late-type if we detected H alpha emission at an equivalent width greater than 1 Angstrom. The spectra were obtained through fixed apertures, so they reflect activity in the galaxy cores, but this does not significantly bias the classifications of the compact dwarfs in our sample. The new classifications reveal a higher rate of star formation among the dwarf galaxies than suggested by morphological classification: 35 per cent have significant H alpha emission indicative of star formations but only 19 per cent were morphologically classified as late-types. The star-forming dwarf galaxies span the full range of physical sizes and we find no evidence in our data for a distinct class of star-forming blue compact dwarf (BCD) galaxy. The distribution of scale sizes is consistent with evolutionary processes which transform late-type dwarfs to early-type dwarfs. The fraction of dwarfs with active star formation drops rapidly towards the cluster centre: this is the usual density-morphology relation confirmed here for dwarf galaxies. The star-forming dwarfs are concentrated in the outer regions of the cluster, the most extreme in an infalling subcluster. We estimate gas depletion time-scales for five dwarfs with detected Hi emission: these are long (of order 10(10) yr), indicating that an active gas removal process must be involved if they are transformed into gas-poor dwarfs as they fall further into the cluster. Finally, in agreement with our previous results, we find no compact dwarf elliptical (M 32-like) galaxies in the Fornax Cluster.
Resumo:
The origin of smooth muscle cells involved in vascular healing was examined. Eighteen C57BL/6 (Ly 5.2) female mice underwent whole body irradiation followed by transfusion with 10(6) bone nucleated marrow cells from congenic (Ly 5.1) male donors. Successful repopulation by donor marrow was demonstrated after 4 weeks by flow cytometry with FITC-conjugated A20.1/Ly 5.1 monoclonal antibody. The iliac artery of six of the chimeric mice was scratch-injured by five passes of a probe, causing severe medial damage. After 4 weeks the arterial lumen was obliterated by a cell-rich neointima, with alpha-smooth muscle actin-containing cells present around the residual lumen. Approximately half of these cells were of male donor origin, as evidenced by in situ hybridization with a Y chromosome-specific probe. An organized arterial thrombus was formed in the remaining 12 chimeric mice by inserting an 8.0 silk suture into the left common carotid artery. Donor cells staining with alpha-smooth muscle actin were found in those arteries sustaining serious damage but not in arteries with minimal damage. Our results suggest that bone marrow-derived cells are recruited in vascular healing as a complementary source of smooth muscle-like cells when the media is severely damaged and few resident smooth muscle cells are available to effect repair.
Resumo:
A new model of halo formation in directional solidification is presented. The model describes halo formation in terms of competitive growth between the halo phase and coupled eutectic in liquid with a nominal composition that follows the primary phase liquidus extension with decreasing temperature. The model distinguishes between the effects of constitutional, capillarity and (where applicable) kinetic undercooling and avoids a number of theoretical inconsistencies associated with previous models. The critical growth rate for halo formation in directionally solidified hypereutectic Al-Si alloys is calculated using the model in conjunction with models of primary phase and coupled eutectic growth from the literature. The calculated result agrees reasonably well with the experimental result of Yilmaz and Elliott (Met. Sci. 18 (1984) 362), given the use of a relatively simple isolated dendrite tip model to calculate the growth undercooling of the halo tip. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
We use the finite element method to solve coupled problems between pore-fluid flow and heat transfer in fluid-saturated porous rocks. In particular, we investigate the effects of both the hot pluton intrusion and topographically driven horizontal flow on the distributions of the pore-flow velocity and temperature in large-scale hydrothermal systems. Since general mineralization patterns are strongly dependent on distributions of both the pore-fluid velocity and temperature fields, the modern mineralization theory has been used to predict the general mineralization patterns in several realistic hydrothermal systems. The related numerical results have demonstrated that: (1) The existence of a hot intrusion can cause an increase in the maximum value of the pore-fluid velocity in the hydrothermal system. (2) The permeability of an intruded pluton is one of the sensitive parameters to control the pore-fluid flow, heat transfer and ore body formation in hydrothermal systems. (3) The maximum value of the pore-fluid velocity increases when the bottom temperature of the hydrothermal system is increased. (4) The topographically driven flow has significant effects on the pore-fluid flow, temperature distribution and precipitation pattern of minerals in hydrothermal systems. (5) The size of the computational domain may have some effects on the pore-fluid flow and heat transfer, indicating that the size of a hydrothermal system may affect the pore-fluid flow and heat transfer within the system. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
An assessment of the changes in the distribution and extent of mangroves within Moreton Bay, southeast Queensland, Australia, was carried out. Two assessment methods were evaluated: spatial and temporal pattern metrics analysis, and change detection analysis. Currently, about 15,000 ha of mangroves are present in Moreton Bay. These mangroves are important ecosystems, but are subject to disturbance from a number of sources. Over the past 25 years, there has been a loss of more than 3800 ha, as a result of natural losses and mangrove clearing (e.g. for urban and industrial development, agriculture and aquaculture). However, areas of new mangroves have become established over the same time period, offsetting these losses to create a net loss of about 200 ha. These new mangroves have mainly appeared in the southern bay region and the bay islands, particularly on the landward edge of existing mangroves. In addition, spatial patterns and species composition of mangrove patches have changed. The pattern metrics analysis provided an overview of mangrove distribution and change in the form of single metric values, while the change detection analysis gave a more detailed and spatially explicit description of change. An analysis of the effects of spatial scales on the pattern metrics indicated that they were relatively insensitive to scale at spatial resolutions less than 50 m, but that most metrics became sensitive at coarser resolutions, a finding which has implications for mapping of mangroves based on remotely sensed data. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Activation of prophenoloxidase (proPO) in insects is a defense mechanism against intruding microorganisms and parasites. Pattern recognition molecules induce activation of an enzymatic cascade involving serine proteinases, which leads to the conversion of proPO to active phenoloxidase (PO). Phenolic compounds produced by pPO-activation are toxic to invaders. Here, we describe the isolation of a venom protein from the parasitoid, Cotesia rubecula, injected into the host, Pieris rapae, which is homologous to serine proteinase homologs (SPH). The data presented here indicate that the protein interferes with the proteolytic cascade, which under normal circumstances leads to the activation of proPO and melanin formation. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Understanding the triggers for some cyanobacteria of the Nostocales and Stigonematales orders to produce specialised reproductive cells termed akinetes, is very important to gain further insights into their ecology. By improving our understanding of their life cycle, appropriate management options may be devised to control the formation of these cells, and therefore the potential bloom inoculum which they are thought to provide, may be reduced. This study investigated the effect of chemical (phosphorus limitation), and environmental variables (temperature shock) on akinete differentiation in the freshwater cyanobacterium Cylindrospermopsis raciborskii (AWT 205/1). From the preliminary results, it is suggested that the availability of phosphorus and changes in temperature were a necessary requirement for the formation of akinetes in this particular strain of C. raciborskii. In the four phosphorus treatments investigated (0, 3, 38 and 75 mug l(-1) P), only the two higher treatments produced akinetes (approximately 220 ml(-1)). When the first akinetes were observed in the 38 and 75 mug l(-1) P treatments, filterable reactive phosphorus (FRP) concentrations in the medium were approximately 22 and 52 mug l(-1) P, respectively, indicating that there was no phosphorus limitation. In the temperature shock experiment, akinetes were observed in the 15 and 20degreesC treatments. However, akinetes were degraded (pale yellow colour, limited swelling and shrivelled edges) and in much lower concentrations, which was thought to be a result of the daily temperature shock. We suggest that the formation of akinetes in C. raciborskii (AWT 205/1) can be triggered by an initial temperature shock and that phosphorus is a necessary requirement to allow further growth and full development of akinetes.
Resumo:
1. Dwarf stands of the mangrove Rhizophora mangle L. are extensive in the Caribbean. We fertilized dwarf trees in Almirante Bay, Bocas del Toro Province, north-eastern Panama with nitrogen (N) and phosphorus (P) to determine (1) if growth limitations are due to nutrient deficiency; and (2) what morphological and/or physiological factors underlie nutrient limitations to growth. 2. Shoot growth was 10-fold when fertilized with P and twofold with N fertilization, indicating that stunted growth of these mangroves is partially due to nutrient deficiency. 3. Growth enhancements caused by N or P enrichment could not be attributed to increases in photosynthesis on a leaf area basis, although photosynthetic nutrient-use efficiency was improved. The most dramatic effect was on stem hydraulic conductance, which was increased sixfold by P and 2.5-fold with N enrichment. Fertilization with P enhanced leaf and stem P concentrations and reduced C : N ratio, but did not alter leaf damage by herbivores. 4. Our findings indicate that addition of N and P significantly alter tree growth and internal nutrient dynamics of mangroves at Bocas del Toro, but also that the magnitude, pattern and mechanisms of change will be differentially affected by each nutrient.
Resumo:
The current research explored the processes that predominate during the anticipation of an emotionally salient event. Experiment 1 (N536), employed three different conditional stimuli followed by pictorial pleasant, unpleasant or neutral unconditioned stimuli. Half the participants were trained with visual CSs, the other half with tactile CSs. In the group trained with visual CSs, startle eyeblinks were larger and faster during CSs that were paired with unpleasant pictures than CSs paired with neutral or pleasant pictures respectively, indicating an affect startle pattern. This linear trend was not found in the group trained with tactile CSs. Experiment 2 (N564) aimed to investigate whether the affective pattern found in the startle data in Experiment 1 could also be found using a behavioural measure of emotion. This time participants’ reaction time during a post-experimental affective priming taskwas used as dependantmeasure to assess the presence of emotional learning. Instead of a simple differential conditioning task, an occasion setting paradigm was employed and participants were trained using either a feature positive or feature negative design with pleasant or unpleasant picture USs. For participants trained with unpleasant USs, valence ratings collected before and after conditioning training suggested the presence of emotional learning, whereas no such pattern was found for participants trained with pleasant USs. These findings were not confirmed in the priming data.
Resumo:
A series of aluminum-10 wt pet silicon castings were produced in sand molds to investigate the effect of modification on porosity formation. Modification with individual additions of either strontium or sodium resulted in a statistically significant increase in the level of porosity compared to unmodified castings. The increase in porosity with modification is due to the presence of numerous dispersed pores, which were absent in the unmodified casting. It is proposed that these pores form as a result of differences in size of the aluminum-silicon eutectic grains between unmodified and modified alloys. A geometric model is developed to show how the size of eutectic grains can influence the amount and distribution of porosity. Unlike traditional feeding-based models, which incorporate the effect: of microstructure on permeability, this model considers what happens when liquid is isolated from the riser and can no longer flow. This simple isolation model complements rather than contradicts existing theories on modification-related porosity formation and should be considered in the development of future comprehensive models.
Resumo:
A large number of ore deposits that formed in the Peruvian Andes during the Miocene (15-5 Ma) are related to the subduction of the Nazea plate beneath the South American plate. Here we show that the spatial and temporal distribution of these deposits correspond with the arrival of relatively buoyant topographic anomalies, namely the Nazca Ridge in central Peru and the now-consumed Inca Plateau in northern Peru, at the subduction zone. Plate reconstruction shows a rapid metallogenic response to the arrival of the topographic anomalies at the subduction trench. This is indicated by clusters of ore deposits situated within the proximity of the laterally migrating zones of ridge subduction. It is accordingly suggested that tectonic changes associated with impingement of the aseismic ridge into the subduction zone may trigger the formation of ore deposits in metallogenically fertile suprasubduction environments. (c) 2005 Elsevier B.V All rights reserved.