170 resultados para Optimized perturbation theory
Resumo:
The present exploratory-descriptive cross-national study focused on the career development of 11- to 14-yr.-old children, in particular whether they can match their personal characteristics with their occupational aspirations. Further, the study explored whether their matching may be explained in terms of a fit between person and environment using Holland's theory as an example. Participants included 511 South African and 372 Australian children. Findings relate to two items of the Revised Career Awareness Survey that require children to relate personal-social knowledge to their favorite occupation. Data were analyzed in three stages using descriptive statistics, i.e., mean scores, frequencies, and percentage agreement. The study indicated that children perceived their personal characteristics to be related to their occupational aspirations. However, how this matching takes place is not adequately accounted for in terms of a career theory such as that of Holland.
Resumo:
In recent years, career development and career counseling have increasingly been informed by concepts emanating from the constructivist worldview. For example, the Systems Theory Framework (STF; M. McMahon, 2002; M. McMahon I W. Patton, 1995; W. Patton I M. McMahon, 1997, 1999) of career development has been proposed as a metatheoretical account of career development. Furthermore, its theoretical constructs may be applied to career counseling. Thus, the STF provides a theoretical and practical consistency to career counseling and addresses concerns about a gulf between career theory and practice. This article discusses the practical application of the STF of career development as a guide to career counseling.
Resumo:
Increasing recognition of cultural influences on career development requires expanded theoretical and practical perspectives. Theories of career development need to explicate views of culture and provide direction for career counseling with clients who are culturally diverse. The Systems Theory Framework (STF) is a theoretical foundation that accounts for systems of influence on people's career development, including individual, social, and environmental/societal contexts. The discussion provides a rationale for systemic approaches in multicultural career counseling and introduces the central theoretical tenets of the STF. Through applications of the STF, career counselors are challenged to expand their roles and levels of intervention in multicultural career counseling.
Resumo:
Conditions which influence the viability, integrity, and extraction efficiency of the isolated perfused rat liver were examined to establish optimal conditions for subsequent work in reperfusion injury studies including the choice of buffer, use of oncotic agents, hematocrit, perfusion flow rate, and pressure. Rat livers were perfused with MOPS-buffered Ringer solution with or without erythrocytes. Perfusates were collected and analyzed for blood gases, electrolytes, enzymes, radioactivity in MID studies, and lignocaine in extraction studies. Liver tissue was sampled for histological examinations, and wet:dry weight of the liver was also determined. MOPS-buffered Ringer solution was found to be superior to Krebs bicarbonate buffer, in terms of pH control and buffering capacity, especially during any prolonged period of liver perfusion. A pH of 7.2 is chosen for perfusion since this is the physiological pH of the portal blood. The presence of albumin was important as an oncotic agent, particularly when erythrocytes were used in the perfusate. Perfusion pressure, resistance, and vascular volume are how-dependent and the inclusion of erythrocytes in the perfusate substantially altered the flow characteristics for perfusion pressure and resistance but not vascular volume. Lignocaine extraction was relatively flow-independent. Perfusion injury as defined by enzyme release and tissue fine structure was closely related to the supply of O-2. The optimal conditions for liver perfusion depend upon an adequate supply of oxygen. This can be achieved by using either erythrocyte-free perfusate at a how rate greater than 6 ml/min/g liver or a 20% erythrocyte-containing perfusate at 2 ml/min/g. (C) 1996 Academic Press, Inc.
Resumo:
Colonius suggests that, in using standard set theory as the language in which to express our computational-level theory of human memory, we would need to violate the axiom of foundation in order to express meaningful memory bindings in which a context is identical to an item in the list. We circumvent Colonius's objection by allowing that a list item may serve as a label for a context without being identical to that context. This debate serves to highlight the value of specifying memory operations in set theoretic notation, as it would have been difficult if not impossible to formulate such an objection at the algorithmic level.
Resumo:
Odorant-induced currents in mammalian olfactory receptor neurons have proved difficult to obtain reliably using conventional whole-cell recording. By using a mathematical model of the electrical circuit of the patch and rest-of-cell, we demonstrate how cell-attached patch measurements can be used to quantitatively analyze responses to odorants or a high (100 mM) K+ solution. High K+ induced an immediate current flux from cell to pipette, which was modeled as a depolarization of similar to 52 mV, close to that expected from the Nernst equation (56 mV), and no change in the patch conductance. By contrast, a cocktail of cAMP-stimulating odorants induced a current flux from pipette into cell following a significant (4-10 s) delay. This was modeled as an average patch conductance increase of 36 pS and a depolarization of 13 mV, Odorant-induced single channels had a conductance of 16 pS. In cells bathed with no Mg2+ and 0.25 mM Ca2+, odorants induced a current flow from cell to pipette, which was modeled as a patch conductance increase of similar to 115 pS and depolarization of similar to 32 mV, All these results are consistent with cAMP-gated cation channels dominating the odorant response, This approach, which provides useful estimates of odorant-induced voltage and conductance changes, is applicable to similar measurements in any small cells.
Resumo:
Experimental data for E. coli debris size reduction during high-pressure homogenisation at 55 MPa are presented. A mathematical model based on grinding theory is developed to describe the data. The model is based on first-order breakage and compensation conditions. It does not require any assumption of a specified distribution for debris size and can be used given information on the initial size distribution of whole cells and the disruption efficiency during homogenisation. The number of homogeniser passes is incorporated into the model and used to describe the size reduction of non-induced stationary and induced E. coil cells during homogenisation. Regressing the results to the model equations gave an excellent fit to experimental data ( > 98.7% of variance explained for both fermentations), confirming the model's potential for predicting size reduction during high-pressure homogenisation. This study provides a means to optimise both homogenisation and disc-stack centrifugation conditions for recombinant product recovery. (C) 1997 Elsevier Science Ltd.