66 resultados para Network resource management
Resumo:
In natural estuaries, contaminant transport is driven by the turbulent momentum mixing. The predictions of scalar dispersion can rarely be predicted accurately because of a lack of fundamental understanding of the turbulence structure in estuaries. Herein detailed turbulence field measurements were conducted at high frequency and continuously for up to 50 hours per investigation in a small subtropical estuary with semi-diurnal tides. Acoustic Doppler velocimetry was deemed the most appropriate measurement technique for such small estuarine systems with shallow water depths (less than 0.5 m at low tides), and a thorough post-processing technique was applied. The estuarine flow is always a fluctuating process. The bulk flow parameters fluctuated with periods comparable to tidal cycles and other large-scale processes. But turbulence properties depended upon the instantaneous local flow properties. They were little affected by the flow history, but their structure and temporal variability were influenced by a variety of mechanisms. This resulted in behaviour which deviated from that for equilibrium turbulent boundary layer induced by velocity shear only. A striking feature of the data sets is the large fluctuations in all turbulence characteristics during the tidal cycle. This feature was rarely documented, but an important difference between the data sets used in this study from earlier reported measurements is that the present data were collected continuously at high frequency during relatively long periods. The findings bring new lights in the fluctuating nature of momentum exchange coefficients and integral time and length scales. These turbulent properties should not be assumed constant.
Resumo:
Turtle excluder devices (TEDs) are being trialed on a voluntary basis in many Australian prawn (shrimp) trawl fisheries to reduce sea turtle captures. Analysis of TED introductions into shrimp trawl fisheries of the United States provided major insights into why conflicts occurred between shrimpers, conservationists, and government agencies. A conflict over the introduction and subsequent regulation of TEDs occurred because the problem and the solution were perceived differently by the various stakeholders. Attempts to negotiate and mediate the conflict broke down, resulting in litigation against the U.S. government by conservationists and shrimpers. Litigation was not an efficient resolution to the sea turtle-TED-trawl conflict but it appears that litigation was the only remaining path of resolution once the issue became polarized. We review two major Australian trawl fisheries to identify any significant differences in circumstances that may affect TED acceptance. Australian trawl fisheries are structured differently and good communication occurs between industry and researchers. TEDs are being introduced as mature technology. Furthermore, bycatch issues are of increasing concern to all stakeholders. These factors, combined with insights derived from previous conflicts concerning TEDs in the United Stares, increase the possibilities that TEDs will be introduced to Australian fishers with better acceptance.
Resumo:
Community awareness of the sustainable use of land, water and vegetation resources is increasing. The sustainable use of these resources is pivotal to sustainable farming systems. However, techniques for monitoring the sustainable management of these resources are poorly understood and untested. We propose a framework to benchmark and monitor resources in the grains industry. Eight steps are listed below to achieve these objectives: (i) define industry issues; (ii) identify the issues through growers, stakeholder and community consultation; (iii) identify indicators (measurable attributes, properties or characteristics) of sustainability through consultation with growers, stakeholders, experts and community members, relating to: crop productivity; resource maintenance/enhancement; biodiversity; economic viability; community viability; and institutional structure; (iv) develop and use selection criteria to select indicators that consider: responsiveness to change; ease of capture; community acceptance and involvement; interpretation; measurement error; stability, frequency and cost of measurement; spatial scale issues; and mapping capability in space and through time. The appropriateness of indicators can be evaluated using a decision making system such as a multiobjective decision support system (MO-DSS, a method to assist in decision making from multiple and conflicting objectives); (v) involve stakeholders and the community in the definition of goals and setting benchmarking and monitoring targets for sustainable farming; (vi) take preventive and corrective/remedial action; (vii) evaluate effectiveness of actions taken; and (viii) revise indicators as part of a continual improvement principle designed to achieve best management practice for sustainable farming systems. The major recommendations are to: (i) implement the framework for resources (land, water and vegetation, economic, community and institution) benchmarking and monitoring, and integrate this process with current activities so that awareness, implementation and evolution of sustainable resource management practices become normal practice in the grains industry; (ii) empower the grains industry to take the lead by using relevant sustainability indicators to benchmark and monitor resources; (iii) adopt a collaborative approach by involving various industry, community, catchment management and government agency groups to minimise implementation time. Monitoring programs such as Waterwatch, Soilcheck, Grasscheck and Topcrop should be utilised; (iv) encourage the adoption of a decision making system by growers and industry representatives as a participatory decision and evaluation process. Widespread use of sustainability indicators would assist in validating and refining these indicators and evaluating sustainable farming systems. The indicators could also assist in evaluating best management practices for the grains industry.
Resumo:
The Great Barrier Reef Water Quality Protection Plan (the Reef Plan) is a joint initiative of the Australian and Queensland Governments. The Reef Plan aims to progress an integrated approach to natural resource management planning by building on the existing partnerships between the different levels of government, industry groups, the community and research providers within the Reef catchments, principally through partnerships with the regional natural resource management (NRM) bodies.