55 resultados para NO and synthase
Resumo:
Acetohydroxyacid synthase (AHAS; EC 4.1.3.18) catalyzes the first step in branched-chain amino acid biosynthesis. The enzyme requires thiamin diphosphate and FAD for activity, but the latter is unexpected, because the reaction involves no oxidation or reduction. Due to its presence in plants, AHAS is a target for sulfonylurea and imidazolinone herbicides. Here, the crystal structure to 2.6 A resolution of the catalytic subunit of yeast AHAS is reported. The active site is located at the dimer interface and is near the proposed herbicide-binding site. The conformation of FAD and its position in the active site are defined. The structure of AHAS provides a starting point for the rational design of new herbicides. (C) 2002 Elsevier Science Ltd.
Resumo:
This study tested the hypotheses that skeletal muscle mitochondrial ATP production rate (MAPR) is impaired in patients with peripheral arterial disease (PAD) and that it relates positively to their walking performances. Seven untrained patients, eight exercise-trained patients and 11 healthy controls completed a maximal walking test and had muscle sampled from the gastrocnemius medialis muscle. Muscle was analysed for its MAPR in the presence of pyruvate, palmitoyl-L-carnitine or both, as well as citrate synthase (CS) activity. MAPRs were not different between untrained PAD and controls. In contrast, MAPRs (pyruvate) were significantly higher in trained PAD vs. controls. MAPR (pyruvate combinations) was also significantly higher in trained than untrained PAD muscle. MAPR and CS activity were highly correlated with walking performance in patients, but not in controls. These data do not support the hypothesis that isolated mitochondria are functionally impaired in PAD and demonstrate that the muscle mitochondrial capacity to oxidize carbohydrate is positively related to walking performance in these patients.
Resumo:
Leucine and valine are formed in a common pathway from pyruvate in which the first intermediate is 2-acetolactate. In some bacteria, this compound also has a catabolic fate as the starting point for the butanediol fermentation. The enzyme (EC 4.1.3.18) that forms 2-acetolactate is known as either acetohydroxyacid synthase (AHAS) or acetolactate synthase (ALS), with the latter name preferred for the catabolic enzyme. A significant difference between AHAS and ALS is that the former requires FAD for catalytic activity, although the reason for this requirement is not well understood. Both enzymes require the cofactor thiamine diphosphate. Here, the crystallization and preliminary X-ray diffraction analysis of the Klebsiella pneumoniae ALS is reported. Data to 2.6 Angstrom resolution have been collected at 100 K using a rotating-anode generator and an R-AXIS IV++ detector. Crystals have unit-cell parameters a = 137.4, b = 143.9, c = 134.4 Angstrom, alpha = 90, beta = 108.4, gamma = 90degrees and belong to space group C2. Preliminary analysis indicates that there are four monomers located in each asymmetric unit.
Resumo:
Acetohydroxyacid synthase (AHAS; EC 4.1.3.18) contains catalytic and regulatory subunits, the latter being required for sensitivity to feedback regulation by leucine, valine and isoleucine. The regulatory subunit of Arabidopsis thaliana AHAS possesses a sequence repeat and we have suggested preciously that one repeat binds leucine while the second binds valine or isoleucine, with synergy between the two sites. We have mutated four residues in each repeat, based on a model of the regulatory subunit. The data confirm that there are separate leucine and valine/isoleucine sites, and suggest a complex pathway for regulatory signal transmission to the catalytic subunit. (C) 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
Endothelial function plays a key role in the local regulation of vascular tone. Alterations in endothelial function may result in impaired release of endothelium-derived relaxing factors or increased release of endothelium-derived contracting factors. Heart failure may impair endothelial function by means of reduced synthesis and release of nitric oxide (NO) or by increased degradation of NO and increased production of endothelin-1. Endothelial dysfunction may worsen heart function by means of peripheral effects, causing increased afterload and central effects such as myocardial ischemia and inducible nitric oxide synthase (iNOS)-induced detrimental effects. Evidence from clinical studies has suggested that there is a correlation between decreased endothelial function and increasing severity of congestive heart failure (CHF). Treatments that improve heart function may also improve endothelial dysfunction. The relationship between endothelial dysfunction and heart failure may be masked by the stage of endothelial dysfunction, the location of vessels being tested, and the state of endothelial-dependent vasodilatation response.
Resumo:
Caveolae and their proteins, the caveolins, transport macromolecules; compartmentalize signalling molecules; and are involved in various repair processes. There is little information regarding their role in the pathogenesis of significant renal syndromes such as acute renal failure (ARF). In this study, an in vivo rat model of 30 min bilateral renal ischaemia followed by reperfusion times from 4 h to 1 week was used to map the temporal and spatial association between caveolin-1 and tubular epithelial damage (desquamation, apoptosis, necrosis). An in vitro model of ischaemic ARF was also studied, where cultured renal tubular epithelial cells or arterial endothelial cells were subjected to injury initiators modelled on ischaemia-reperfusion (hypoxia, serum deprivation, free radical damage or hypoxia-hyperoxia). Expression of caveolin proteins was investigated using immunohistochemistry, immunoelectron microscopy, and immunoblots of whole cell, membrane or cytosol protein extracts. In vivo, healthy kidney had abundant caveolin-1 in vascular endothelial cells and also some expression in membrane surfaces of distal tubular epithelium. In the kidneys of ARF animals, punctate cytoplasmic localization of caveolin-1 was identified, with high intensity expression in injured proximal tubules that were losing basement membrane adhesion or were apoptotic, 24 h to 4 days after ischaemia-reperfusion. Western immunoblots indicated a marked increase in caveolin-1 expression in the cortex where some proximal tubular injury was located. In vitro, the main treatment-induced change in both cell types was translocation of caveolin-1 from the original plasma membrane site into membrane-associated sites in the cytoplasm. Overall, expression levels did not alter for whole cell extracts and the protein remained membrane-bound, as indicated by cell fractionation analyses. Caveolin-1 was also found to localize intensely within apoptotic cells. The results are indicative of a role for caveolin-1 in ARF-induced renal injury. Whether it functions for cell repair or death remains to be elucidated. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Acetohydroxyacid synthase (AHAS) (acetolactate synthase, EC 4.1.3.18) catalyzes the first step in branchedchain amino acid biosynthesis and is the target for sulfonylurea and imidazolinone herbicides. These compounds are potent and selective inhibitors, but their binding site on AHAS has not been elucidated. Here we report the 2.8 Angstrom resolution crystal structure of yeast AHAS in complex with a sulfonylurea herbicide, chlorimuron ethyl. The inhibitor, which has a K-i of 3.3 nM blocks access to the active site and contacts multiple residues where mutation results in herbicide resistance. The structure provides a starting point for the rational design of further herbicidal compounds.
Resumo:
Acetohydroxyacid synthase (AHAS, EC 4.1.3.18) catalyses the first step in branched-chain amino acid biosynthesis and is the target for sulfonylurea and imidazolinone herbicides, which act as potent and specific inhibitors. Mutants of the enzyme have been identified that are resistant to particular herbicides. However, the selectivity of these mutants towards various sulfonylureas and imidazolinones has not been determined systematically. Now that the structure of the yeast enzyme is known, both in the absence and presence of a bound herbicide, a detailed understanding of the molecular interactions between the enzyme and its inhibitors becomes possible. Here we construct 10 active mutants of yeast AHAS, purify the enzymes and determine their sensitivity to six sulfonylureas and three imidazolinones. An additional three active mutants were constructed with a view to increasing imidazolinone sensitivity. These three variants were purified and tested for their sensitivity to the imidazolinones only. Substantial differences are observed in the sensitivity of the 13 mutants to the various inhibitors and these differences are interpreted in terms of the structure of the herbicide-binding site on the enzyme.
Resumo:
A regulatory protein, PpaA, involved in photosystem formation in the anoxygenic phototrophic proteobacterium Rhodobacter sphaeroides has been identified and characterized in vivo. Based on the phenotypes of cells expressing the ppaA gene in extra copy and on the phenotype of the ppaA null mutant, it was concluded that PpaA activates photopigment production and puc operon expression under aerobic conditions. This is in contrast to the function of the PpaA homologue from Rhodobacter capsulatus, AerR, which acts as a repressor under aerobic conditions [Dong, C., Elsen, S., Swem, L. R. & Bauer, C. E. (2002). J Bacteriol 184, 2805-2814]. The expression of the ppaA gene increases several-fold in response to a decrease in oxygen tension, suggesting that the PpaA protein is active under conditions of low or no oxygen. However, no discernible phenotype of a ppaA null mutant was observed under anaerobic conditions tested thus far. The photosystem gene repressor PpsR mediates repression of ppaA gene expression under aerobic conditions. Sequence analysis of PpaA homologues from several anoxygenic phototrophic bacteria revealed a putative corrinoid-binding domain. It is suggested that PpaA binds a corrinoid cofactor and the availability or structure of this cofactor affects PpaA activity.