68 resultados para NMR symbols and terms
Resumo:
The Ile-->Ser84 substitution in the thyroid hormone transport protein transthyretin is one of over 50 variations found to be associated with familial amyloid polyneuropathy, a hereditary type of lethal amyloidosis. Using a peptide analogue of the loop containing residue 84 in transthyretin, we have examined the putative local structural effects of this substitution using H-1-NMR spectroscopy. The peptide, containing residues 71-93 of transthyretin with its termini linked via a disulfide bond, was found to possess the same helix-turn motif as in the corresponding region of the crystallographically derived structure of transthyretin in 20% trifluoroethanol (TFE) solution. It therefore, represents a useful model with which to examine the effects of amyloidogenic substitutions. In a peptide analogue containing the Ile84-->Ser substitution it was found that the substitution does not greatly disrupt the overall three-dimensional structure, but leads to minor local differences at the turn in which residue 84 is involved. Coupling constant and NOE measurements indicate that the helix-turn motif is still present, but differences in chemical shifts and amide-exchange rates reflect a small distortion. This is in keeping with observations that several other mutant forms of transthyretin display similar subunit interactions and those that have been structurally analysed possess a near native structure. We propose that the Ser84 mutation induces only subtle perturbations to the transthyretin structure which predisposes the protein to amyloid formation.
Resumo:
Using CD and 2D H-1 NMR spectroscopy, we have identified potential initiation sites for the folding of T4 lysozyme by examining the conformational preferences of peptide fragments corresponding to regions of secondary structure. CD spectropolarimetry showed most peptides were unstructured in water, but adopted partial helical conformations in TFE and SDS solution. This was also consistent with the H-1 NMR data which showed that the peptides were predominantly disordered in water, although in some cases, nascent or small populations of partially folded conformations could be detected. NOE patterns, coupling constants, and deviations from random coil Her chemical shift values complemented the CD data and confirmed that many of the peptides were helical in TFE and SDS micelles. In particular, the peptide corresponding to helix E in the native enzyme formed a well-defined helix in both TFE and SDS, indicating that helix E potentially forms an initiation site for T4 lysozyme folding. The data for the other peptides indicated that helices D, F, G, and H are dependent on tertiary interactions for their folding and/or stability. Overall, the results from this study, and those of our earlier studies, are in agreement with modeling and IID-deuterium exchange experiments, and support an hierarchical model of folding for T4 lysozyme.
Resumo:
The aim of this study was to investigate the association between false belief comprehension, the exhibition of pretend play and the use of mental state terms in pre-school children. Ferry children, aged between 36 and 54 months were videotaped engaging in free play with each parent. The exhibit-ion of six distinct acts of pretend play and the expression of 16 mental sr:ate terms were coded during play. Each child was also administered a pantomime task and three standard false belief casks. Reliable associations were also found between false belief performance and the pretence categories of object substitution and role assignment, and the exhibition of imaginary object pantomimes. Moreover, the use of mental state terms was positively correlated with false belief and the pretence categories of object substitution, imaginary play and role assignment, and negatively correlated with the exhibition of body part object pantomimes. These findings indicate that the development of a mental state lexicon and some, bur not all, components of pretend play are dependent on the capacity for metarepresentational cognition.
Resumo:
The performance of three different techniques for determining proton rotating frame relaxation rates (T1pH) in charred and uncharred woods is compared. The variable contact time (VCT) experiment is shown to over-estimate T1pH, particularly for the charred samples, due to the presence of slowly cross-polarizing C-13 nuclei. The variable spin (VSL) or delayed contact experiment is shown to overcome these problems; however, care is needed in the analysis to ensure rapidly relaxing components are not overlooked. T1pH is shown to be non-uniform for both charred and uncharred wood samples; a rapidly relaxing component (T1pH = 0.46-1.07 ms) and a slowly relaxing component (T1pH = 3.58-7.49) is detected in each sample. T1pH for each component generally decreases with heating temperature (degree of charring) and the proportion of rapidly relaxing component increases. Direct T1pH determination (via H-1 detection) shows that all samples contain an even faster relaxing component (0.09-0.24 ms) that is virtually undetectable by the indirect (VCT and VSL) techniques. A new method for correcting for T1pH signal losses in spin counting experiments is developed to deal with the rapidly relaxing component detected in the VSL experiment. Implementation of this correction increased the proportion of potential C-13 CPMAS NMR signal that can be accounted for by up to 50% for the charred samples. An even greater proportion of potential signal can be accounted for if the very rapidly relaxing component detected in the direct T1pH determination is included; however, it must be kept in mind that this experiment also detects H-1 pools which may not be involved in H-1-C-13 cross-polarization. (C) 2002 Elsevier Science (USA).
Resumo:
in Escherichia coli, the DnaG primase is the RNA polymerase that synthesizes RNA primers at replication forks. It is composed of three domains, a small N-terminal zinc-binding domain, a larger central domain responsible for RNA synthesis, and a C-terminal domain comprising residues 434-581 [DnaG(434-581)] that interact with the hexameric DnaB helicase. Presumably because of this interaction, it had not been possible previously to express the C-terminal domain in a stably transformed E coli strain. This problem was overcome by expression of DnaG(434-581) under control of tandem bacteriophage gimel-promoters, and the protein was purified in yields of 4-6 mg/L of culture and studied by NMR. A TOCSY spectrum of a 2 mM solution of the protein at pH 7.0, indicated that its structured core comprises residues 444-579. This was consistent with sequence conservation among most-closely related primases. Linewidths in a NOESY spectrum of a 0.5 mM sample in 10 mM phosphate, pH 6.05, 0.1 M NaCl, recorded at 36 degreesC, indicated the protein to be monomeric. Crystals of selenomethionine-substituted DnaG(434-581) obtained by the hanging-drop vapor-diffusion method were body-centered tetragonal, space group I4(1)22, with unit cell parameters a = b 142.2 Angstrom, c = 192.1 Angstrom, and diffracted beyond 2.7 Angstrom resolution with synchrotron radiation. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
N,N-dimethyl-pyrrolidinium iodide has been investigated using differential scanning calorimetry, nuclear magnetic resonance (NMR) spectroscopy, second moment calculations, and impedance spectroscopy. This pyrrolidinium salt exhibits two solid-solid phase transitions, one at 373 K having an entropy change, Delta S, of 38 J mol(-1) K-1 and one at 478 K having Delta S of 5.7 J mol(-1) K-1. The second moment calculations relate the lower temperature transition to a homogenization of the sample in terms of the mobility of the cations, while the high temperature phase transition is within the temperature region of isotropic tumbling of the cations. At higher temperatures a further decrease in the H-1 NMR linewidth is observed which is suggested to be due to diffusion of the cations. (C) 2005 American Institute of Physics.
Resumo:
Qu-Prolog is an extension of Prolog which performs meta-level computations over object languages, such as predicate calculi and lambda-calculi, which have object-level variables, and quantifier or binding symbols creating local scopes for those variables. As in Prolog, the instantiable (meta-level) variables of Qu-Prolog range over object-level terms, and in addition other Qu-Prolog syntax denotes the various components of the object-level syntax, including object-level variables. Further, the meta-level operation of substitution into object-level terms is directly represented by appropriate Qu-Prolog syntax. Again as in Prolog, the driving mechanism in Qu-Prolog computation is a form of unification, but this is substantially more complex than for Prolog because of Qu-Prolog's greater generality, and especially because substitution operations are evaluated during unification. In this paper, the Qu-Prolog unification algorithm is specified, formalised and proved correct. Further, the analysis of the algorithm is carried out in a frame-work which straightforwardly allows the 'completeness' of the algorithm to be proved: though fully explicit answers to unification problems are not always provided, no information is lost in the unification process.
Determination of the solution structures of conantokin-G and conantokin-T by CD and NMR spectroscopy
Resumo:
Conantokin-G and conantokin-T are two paralytic polypeptide toxins originally isolated from the venom of the fish-hunting cone snails of the genus Conus. Conantokin-G and conantokin-T are the only naturally occurring peptidic compounds which possess N-methyl-D-aspartate receptor antagonist activity, produced by a selective non-competitive antagonism of polyamine responses, They are also structurally unusual in that they contain a disproportionately large number of acid labile post-translational gamma-carboxyglutamic acid (Gla) residues, Although no precise structural information has previously been published for these peptides, early spectroscopic measurements have indicated that both conantokin-G and conantokin-T form alpha-helical structures, although there is some debate whether the presence of calcium ions is required for these peptides to adopt this fold, We now report a detailed structural study of synthetic conantokin-G and conantokin-T in a range of solution conditions using CD and H-1 NMR spec troscopy. The three-dimensional structures of conantokin-T and conantokin-G were calculated from H-1 NMR-derived distance and dihedral restraints. Both conantokins were found to contain a mixture of alpha- and 3(10) helix, that give rise to curved and straight helical conformers. Conantokin-G requires the presence of divalent cations (Zn2+, Ca2+, Cu2+, Or Mg2+) to form a stable iv-helix, while conantokin-T adopts a stable alpha-helical structure in aqueous conditions, in the presence or absence of divalent cations (Zn2+, Ca2+, Cu2+, Or Mg2+).
Resumo:
Changes in molecular motion in blends of PEO-PVPh have been studied using measurements of C-13 T-1 rho relaxation times. C-13 T-1 rho relaxation has been confirmed as arising from spin-lattice interactions by observation of the variation in T-1 rho with rf field strength and temperature. In the pure homopolymers a minimum in T-1 rho is observed at ca. 50 K above the glass transition temperatures detected by DSC. After blending, the temperature of the minimum in T-1 rho for PEO increased, while that for PVPh decreased, however, the minima, which correspond to the temperatures where the average correlation times for reorientation are close to 3.1 mu s, are separated by 45 K (in a 45% PEO-PVPh blend). These phenomena are explained in terms of the local nature of T-1 rho measurements. The motions of the individual homopolymer chains are only partially coupled in the blend. A short T-1 rho has been observed for protonated aromatic carbons, and assigned to phenyl rings undergoing large-angle oscillatory motion, The effects of blending, and temperature, on the proportion of rings undergoing oscillatory motion are analyzed.
Resumo:
A comprehensive study was conducted on mesoporous MCM-41. Spectroscopic examinations demonstrated that three types of silanol groups, i.e., single, (SiO)(3)Si-OH, hydrogen-bonded, (SiO)(3)Si-OH-OH-Si(SiO)(3), and geminal, (SiO)(2)Si(OH)(2), can be observed. The number of silanol groups/nm(2), alpha(OH), as determined by NMR, varies between 2.5 and 3.0 depending on the template-removal methods. All these silanol groups were found to be the active sites for adsorption of pyridine with desorption energies of 91.4 and 52.2 kJ mol(-1), respectively. However, only free silanol groups (involving single and geminal silanols) are highly accessible to the silylating agent, chlorotrimethylsilane. Silylation can modify both the physical and chemical properties of MCM-41.
Resumo:
The reactions between novolac resins and hexamethylenetetramine (HMTA) which occur on curing have been studied by C-13 and N-15 high-resolution n.m.r. in both solution and the solid state. Strong evidence for the existence of many curing intermediates is obtained. New curing intermediates are reported along with experimental data to support previously postulated intermediates. The initial curing reactions between novolac and HMTA produce various substituted benzoxazines and benzylamines. Thermal decomposition/oxidation and further reactions of these initial intermediates generate methylene linkages between phenolic rings for chain extension and cross-linking. Among the three kinds of methylene linkages, the para-para methylene linkages are formed at relatively lower temperatures. Various imine, amide and imide side-products also concurrently appear during the process. The initial amount of HMTA plays a critical role in the curing reactivity and chemical structures of the cured resins. The lower the amount of HMTA, the lower the temperature at which curing occurs, and the lower the amount of the nitrogen-containing side-products in the finally cured resins. The ortho-linked intermediates are relatively stable, and can remain in the cured resins up to higher temperatures. The study provides an extensive description of the curing reactions of novolac resins. (C) 1997 Elsevier Science Ltd.
Resumo:
Mobile Lipids detected using H-1-NMR in stimulated lymphocytes were correlated with cell cycle phase, expression of the interleukin-2 receptor alpha and proliferation to assess the activation status of the lymphocytes. Mobile lipid levels, IL-2R alpha expression and proliferation increased after treatment with PMA and ionomycin. PMA or ionomycin stimulation alone induced increased IL-2R alpha expressiom but not proliferation, PMA- but not ionomycin-stimulation generated mobile lipid, Treatment with anti-CD3 antibody did not increase IL-2R alpha expression or proliferation but did generate increased amounts of mobile lipid, The cell cycle status of thymocytes treated with anti-CD3, PMA or ionomycin alone indicated an. accumulation of the cells in the G(1) phase of the cell cycle, The generation of mobile lipid was abrogated in anti-CD3 antibody-stimulated thymic lymphocytes but not in splenic lymphocytes, using a phosphatidylcholine-specific phospholipase C (PC-PLC) inhibitor which blocked cells in the G(1)/S phase of the cell cycle, This suggests that the H-1-NMR-detectable mobile Lipid may be generated in anti-CD3 antibody-stimulated thymic lymphocytes by the action of PC-PLC activity via the catabolism of PC, in the absence of classical signs of activation. (C) 1997 Academic Press.