52 resultados para Mucosal diseases in cattle.
Resumo:
Animal models of autoimmune disease and case reports of patients with these diseases who have been involved in bone marrow transplants have provided important data implicating the haemopoietic stem cell in rheumatic disease pathogenesis. Animal and human examples exist for both cure and transfer of rheumatoid arthritis, systemic lupus erythematosus (SLE) and other organ-specific diseases using allogeneic haemopoietic stem cell transplantation. This would suggest that the stem cell in these diseases is abnormal and could be cured by replacement of a normal stem cell although more in vitro data are required in this area. Given the morbidity and increased mortality in some patients with severe autoimmune diseases and the increasing safety of autologous haemopoietic stem cell transplantation (HSCT), pilot studies have been conducted using HSCT in rheumatic diseases. It is still unclear whether an autologous graft will cure these diseases but significant remissions have been obtained which have provided important data for the design of randomized trials of HSCT versus more conventional therapy. Several trials are now open to accrual under the auspices of the European Bone Marrow Transplant Group/European League Against Rheumatism (EBMT/EULAR) registry. Future clinical and laboratory research will need to document the abnormalities of the stem cell of a rheumatic patient because new therapies based on gene therapy or stem cell differentiation could be apllied to these diseases. With increasing safety of allogeneic HSCT it is not unreasonable to predict cure of some rheumatic diseases in the near future.
Resumo:
Both antigen-specific and non-specific mechanisms may be involved in the pathogenesis of oral lichen planus (OLP). Antigen-specific mechanisms in OLP include antigen presentation by basal keratinocytes and antigen-specific keratinocyte killing by CD8(+) cytotoxic T-cells. Non-specific mechanisms include mast cell degranulation and matrix metalloproteinase (MMP) activation in OLP lesions. These mechanisms may combine to cause T-cell accumulation in the superficial lamina propria, basement membrane disruption, intra-epithelial T-cell migration, and keratinocyte apoptosis in OLP. OLP chronicity may be due, in part, to deficient antigen-specific TGF-beta1-mediated immunosuppression. The normal oral mucosa may be an immune privileged site (similar to the eye, testis, and placenta), and breakdown of immune privilege could result in OLP and possibly other autoimmune oral mucosal diseases. Recent findings in mucocutaneous graft-versus-host disease, a clinical and histological correlate of lichen planus, suggest the involvement of TNF-alpha, CD40, Fas, MMPs, and mast cell degranulation in disease pathogenesis. Potential roles for oral Langerhans cells and the regional lymphatics in OLP lesion formation and chronicity are discussed. Carcinogenesis in OLP may be regulated by the integrated signal from various tumor inhibitors (TGF-beta1, TNF-alpha, IFN-gamma, IL-12) and promoters (MIF, MMP-9). We present our recent data implicating antigen-specific and non-specific mechanisms in the pathogenesis of OLP and propose a unifying hypothesis suggesting that both may be involved in lesion development. The initial event in OLP lesion formation and the factors that determine OLP susceptibility are unknown.
Resumo:
Lichen planus is a disorder characterized by lesions of the skin and oral mucous membranes. Although many patients have involvement of both skin and oral mucosa at some stage during the progress of the disease, a larger group has oral involvement alone. It has been reported that oral lichen planus (OLP) affects one to two percent of the general population and has the potential for malignant transformation in some cases (1, 2). Like many chronic inflammatory skin diseases, it often persists for many years. Numerous disorders may be associated with OLP such as graft-vs.-host disease and Hepatitis C virus infection (3), however, it is unclear how such diverse influences elicit the disease and indeed whether they are identical to idiopathic OLP Available evidence supports the view that OLP is a cell-mediated immunological response to an induced antigenic change in the mucosa (4-6). Studies of the immunopathogenesis of OLP aim to provide specific novel treatments as well as contributing to our understanding of other cell-mediated inflammatory diseases. In this paper, the interactions between mast cells and T cells are explored from the standpoint of immune regulation. From these data, a unifying hypothesis for the immunopathogenesis of OLP is then developed and presented.
Resumo:
In cattle, a neurological lesion similar to that produced in sheep and goats by Clostridium perfringens type D enterotoxaemia has been reported. However, no causal relationship has been established between this disease and the lesion in cattle. The effects of single and multiple intravenous injections of epsilon toxin in three calves aged 6 months were studied. A further calf was inoculated intravenously with saline solution and used as a control. Epsilon toxin invariably produced neurological signs within 2-60 min of the end of the injection process. Clinical signs consisted of loss of consciousness, recumbency, convulsions, paddling, opisthotonus, hyperaesthesia and dyspnoea. Gross changes consisted of severe acute pulmonary oedema, which was particularly marked in the interlobular septa. The histological lesions consisted of intra-alveolar and interstitial oedema of the lung and variable degrees of perivascular proteinaceous oedema in the internal capsule, thalamus and cerebellar white matter. No clinical or post-mortem changes were observed in the control calf. These results show that calves are susceptible to the intravenous injection of epsilon toxin, and that they can show at least some of the histological lesions produced in sheep and goats by this toxin. (C) 2002 Harcourt Publishers Ltd.
Resumo:
The grazing trial at Kidston Gold Mine, North Queensland, was aimed specifically to assess the uptake of metals from the tailing and the potential for unacceptable contamination of saleable meat. Further aims included estimating metal dose rates and identifying potential exposure pathways including plant uptake of heavy metals, mine tailings adhered to plants and direct ingestion of mine tailing. It was found that of the 11 metals analysed (As, Zn, Co, Cd, Cr, Sn, Pb, Sb, Hg, Se and Ni) in the animal's liver, muscle and blood during the 8-month trial period, only accumulation of arsenic and zinc occurred. A risk assessment including these two metals was conducted to determine the potential for chronic metal toxicity and long-term contamination, using the estimates of metal dose rate. It was concluded that no toxicity or long-term contamination in cattle was likely at this site. Management procedures were therefore not required at this site; however, the results highlight percent ground cover and standing dry matter (DM) as important factors in decreasing metal exposure from direct ingestion of tailings and dust adhered to plants. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The Trypanosomatidae comprise a large group of parasitic protozoa, some of which cause important diseases in humans. These include Tryanosoma brucei (the causative agent of African sleeping sickness and nagana in cattle), Trypanosoma cruzi (the causative agent of Chagas' disease in Central and South America), and Leishmania spp. (the causative agent of visceral and [muco]cutaneous leishmaniasis throughout the tropics and subtropics). The cell surfaces of these parasites are covered in complex protein- or carbohydrate-rich coats that are required for parasite survival and infectivity in their respective insect vectors and mammalian hosts. These molecules are assembled in the secretory pathway. Recent advances in the genetic manipulation of these parasites as well as progress with the parasite genome projects has greatly advanced our understanding of processes that underlie secretory transport in trypanosomatids. This article provides an overview of the organization of the trypanosomatid secretory pathway and connections that exist with endocytic organelles and multiple lytic and storage vacuoles. A number of the molecular components that are required for vesicular transport have been identified, as have some of the sorting signals that direct proteins to the cell surface or organelles it? the endosome-vacuole system. Finally, the subcellular organization of the major glycosylation pathways in these parasites is reviewed. Studies on these highly divergent eukaryotes provide important insights into the molecular processes underlying secretory transport that arose very early in eukaryotic evolution. They also reveal unusual or novel aspects of secretory), transport and protein glycosylation that may be exploited in developing new antiparasite drugs.
Resumo:
The consumption of excess alcohol in patients with liver iron storage diseases, in particular the iron-overload disease hereditary haemochromatosis (HH), has important clinical consequences. HH, a common genetic disorder amongst people of European descent, results in a slow, progressive accumulation of excess hepatic iron. If left untreated, the condition may lead to fibrosis, cirrhosis and primary hepatocellular carcinoma. The consumption of excess alcohol remains an important cause of hepatic cirrhosis and alcohol consumption itself may lead to altered iron homeostasis. Both alcohol and iron independently have been shown to result in increased oxidative stress causing lipid peroxidation and tissue damage. Therefore, the added effects of both toxins may exacerbate the pathogenesis of disease and impose an increased risk of cirrhosis. This review discusses the concomitant effects of alcohol and iron on the pathogenesis of liver disease. We also discuss the implications of co-existent alcohol and iron in end-stage liver disease.