142 resultados para Motor cortex stimulation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arguably the most complex conical functions are seated in human cognition, the how and why of which have been debated for centuries by theologians, philosophers and scientists alike. In his best-selling book, An Astonishing Hypothesis: A Scientific Search for the Soul, Francis Crick refined the view that these qualities are determined solely by cortical cells and circuitry. Put simply, cognition is nothing more, or less, than a biological function. Accepting this to be the case, it should be possible to identify the mechanisms that subserve cognitive processing. Since the pioneering studies of Lorent de No and Hebb, and the more recent studies of Fuster, Miller and Goldman-Rakic, to mention but a few, much attention has been focused on the role of persistent neural activity in cognitive processes. Application of modern technologies and modelling techniques has led to new hypotheses about the mechanisms of persistent activity. Here I focus on how regional variations in the pyramidal cell phenotype may determine the complexity of cortical circuitry and, in turn, influence neural activity. Data obtained from thousands of individually injected pyramidal cells in sensory, motor, association and executive cortex reveal marked differences in the numbers of putative excitatory inputs received by these cells. Pyramidal cells in prefrontal cortex have, on average, up to 23 times more dendritic spines than those in the primary visual area. I propose that without these specializations in the structure of pyramidal cells, and the circuits they form, human cognitive processing would not have evolved to its present state. I also present data from both New World and Old World monkeys that show varying degrees of complexity in the pyramidal cell phenotype in their prefrontal cortices, suggesting that cortical circuitry and, thus, cognitive styles are evolving independently in different species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatio-temporal maps of the occipital cortex of macaque monkeys were analyzed using optical imaging of intrinsic signals. The images obtained during localized visual stimulation (IS) were compared with the images obtained on presentation of a blank screen (IB). We first investigated spontaneous variations of the intrinsic signals by analyzing the 100 IBs for each of the three cortical areas. Slow periodical activation was observed in alternation over the cortical areas. Cross-correlation analysis indicated that synchronization of spontaneous activation only took place within each cortical area, but not between them. When a small, drifting grating (2degreesX2degrees) was presented on the fovea. a dark spot appeared in the optical image at the cortical representation of this retinal location. It spread bilaterally along the border between V1 and V2, continuing as a number of parallel dark bands covering a large area of the lateral surface of V1. Cross-correlation analysis showed that during visual stimulation the intrinsic signals over all of the three cortical areas were synchronized, with in-phase activation of V1 and V2 and anti-phase activation of V4 and V1/V2. The significance of these extensive synergistic and antagonistic interactions between different cortical areas is discussed. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motion-induced blindness (MIB) is a phenomenon, perhaps related to perceptual rivalry, where stationary targets disappear and reappear in a cyclic mode when viewed against a background (mask) of coherent, apparent 3-D motion. Since MIB has recently been shown to share similar temporal properties with binocular rivalry, we probed the appearance-disappearance cycle of MIB using unilateral, single-pulse transcranial magnetic stimulation (TMS)-a manipulation that has previously been shown to influence binocular rivalry. Effects were seen for both hemispheres when the timing of TMS was determined prospectively on the basis of a given subject's appearance-disappearance cycle, so that it occurred on average around 300 ms before the time of perceptual switch. Magnetic stimulation of either hemisphere shortened the time to switch from appearance to disappearance and vice versa. However, TMS of left posterior parietal cortex more selectively shortened the disappearance time of the targets if delivered in phase with the disappearance cycle, but lengthened it if TMS was delivered in the appearance phase after the perceptual switch. Opposite effects were seen in the right hemisphere, although less marked than the left-hemisphere effects. As well as sharing temporal characteristics with binocular rivalry, MIB therefore seems to share a similar underlying mechanism of interhemispheric modulation. Interhemispheric switching may thus provide a common temporal framework for uniting the diverse, multilevel phenomena of perceptual rivalry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The placement of monocular laser lesions in the adult cat retina produces a lesion projection zone (LPZ) in primary visual cortex (V1) in which the majority of neurons have a normally located receptive field (RF) for stimulation of the intact eye and an ectopically located RF ( displaced to intact retina at the edge of the lesion) for stimulation of the lesioned eye. Animals that had such lesions for 14 - 85 d were studied under halothane and nitrous oxide anesthesia with conventional neurophysiological recording techniques and stimulation of moving light bars. Previous work suggested that a candidate source of input, which could account for the development of the ectopic RFs, was long-range horizontal connections within V1. The critical contribution of such input was examined by placing a pipette containing the neurotoxin kainic acid at a site in the normal V1 visual representation that overlapped with the ectopic RF recorded at a site within the LPZ. Continuation of well defined responses to stimulation of the intact eye served as a control against direct effects of the kainic acid at the LPZ recording site. In six of seven cases examined, kainic acid deactivation of neurons at the injection site blocked responsiveness to lesioned-eye stimulation at the ectopic RF for the LPZ recording site. We therefore conclude that long-range horizontal projections contribute to the dominant input underlying the capacity for retinal lesion-induced plasticity in V1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patella taping reduces pain ill individuals with patellofemoral pain (PFP), although the mechanism remains unclear. One possibility is that patella taping modifies vasti muscle activity via stimulation of cutaneous afferents. The aim of this study was to investigate the effect of stretching the skin over the patella on vasti Muscle activity in people with PFP. Electromyographic activity (EMG) of individual motor units in vastus medialis obliquus (VMO) was recorded via a needle electrode and from Surface electrodes placed over VMO and vastus lateralis (VL). A tape was applied to the skin directly over the patella and stretch was applied via the tape in three directions, while subjects maintained a gentle isometric knee extension effort at constant force. Recordings were made from five separate motor units in each direction. Stretch applied to the skin over the patella increased VMO surface EMG and was greatest with lateral stretch. There was no change in VL surface EMG activity. While there was no net increase in motor unit firing rate, it was increased in the majority of motor units during lateral stretch. Application of stretch to the skin over VMO via the tape can increase VMO activity, suggesting that cutaneous stimulation may be one mechanism by which patella taping produces a clinical effect. (c) 2004 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have revealed a marked degree of variation in the pyramidal cell phenotype in visual, somatosensory, motor and prefrontal cortical areas in the brain of different primates, which are believed to subserve specialized cortical function. In the present study we carried out comparisons of dendritic structure of layer III pyramidal cells in the anterior and posterior cingulate cortex and compared their structure with those sampled from inferotemporal cortex (IT) and the primary visual area (V1) in macaque monkeys. Cells were injected with Lucifer Yellow in flat-mounted cortical slices, and processed for a light-stable DAB reaction product. Size, branching pattern, and spine density of basal dendritic arbors was determined, and somal areas measured. We found that pyramidal cells in anterior cingulate cortex were more branched and more spinous than those in posterior cingulate cortex, and cells in both anterior and posterior cingulate were considerably larger, more branched, and more spinous than those in area V1. These data show that pyramidal cell structure differs between posterior dysgranular and anterior granular cingulate cortex, and that pyramidal neurons in cingulate cortex have different structure to those in many other cortical areas. These results provide further evidence for a parallel between structural and functional specialization in cortex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In relation to motor control, the basal ganglia have been implicated in both the scaling and focusing of movement. Hypokinetic and hyperkinetic movement disorders manifest as a consequence of overshooting and undershooting GPi (globus pallidus internus) activity thresholds, respectively. Recently, models of motor control have been borrowed to translate cognitive processes relating to the overshooting and undershooting of GPi activity, including attention and executive function. Linguistic correlates, however, are yet to be extrapolated in sufficient detail. The aims of the present investigation were to: (1) characterise cognitive-linguistic processes within hypokinetic and hyperkinetic neural systems, as defined by motor disturbances; (2) investigate the impact of surgically-induced GPi lesions upon language abilities. Two Parkinsonian cases with opposing motor symptoms (akinetic versus dystonic/dyskinetic) served as experimental subjects in this research. Assessments were conducted both prior to as well as 3 and 12 months following bilateral posteroventral pallidotomy (PVP). Reliable changes in performance (i.e. both improvements and decrements) were typically restricted to tasks demanding complex linguistic operations across subjects. Hyperkinetic motor symptoms were associated with an initial overall improvement in complex language function as a consequence of bilateral PVP, which diminished over time, suggesting a decrescendo effect relative to surgical beneficence. In contrast, hypokinetic symptoms were associated with a more stable longitudinal linguistic profile, albeit defined by higher proportions of reliable decline versus improvement in postoperative assessment scores. The above findings endorsed the integration of the GPi within cognitive mechanisms involved in the arbitration of complex language functions. In relation to models of motor control, 'focusing' was postulated to represent the neural processes underpinning lexical-semantic manipulation, and 'scaling' the potential allocation of cognitive resources during the mediation of high-level linguistic tasks. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cognitive functioning has been described as largely impervious to chronic STN-DBS administered over 12-month periods. In relation to the domain of language, however, the effects of STN-DBS are yet to be thoroughly delineated. Verbal fluency tasks represent an almost exclusively applied index of linguistic proficiency relative to neuropsychological research within this population. Comprehensive investigations of the impact of STN-DBS on language function, however, have never been undertaken. The more precise elucidation of the role of the STN in the mediation of language processes, by way of assessments which probe language comprehension and production mechanisms, served as the primary focus of this research. Longitudinal analysis also afforded consideration of the way in which cognitive-linguistic circuits respond to STN-DBS over time. Bilateral STN-DBS primarily effected clinically reliable fluctuations (i.e., both improvements and declines) in performance in both subjects on tasks demanding cognitive-linguistic flexibility in the formulation and comprehension of complex language. Of particular note, both subjects demonstrated a cumulative increase in the proportion of reliable post-operative improvements achieved over time. The findings of this research lend support to models of subcortical participation in language which endorse a role for the STN, and suggest that bilateral STN-DBS may serve to enhance the proficiency of basal ganglia-thalamocortical linguistic circuits over time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The behavior and stability of motor units (MUs) in response to electrical stimulation of different intensities can be assessed with the stimulus-response curve, which is a graphical representation of the size of the compound muscle action potential (CMAP) in relation to stimulus intensity. To examine MU characteristics across the whole stimulus range, the variability of CMAP responses to electrical stimulation, and the differences that occur between normal and disease states, the curve was studied in 11 normal subjects and 16 subjects with amyotrophic lateral sclerosis (ALS). In normal subjects, the curve showed a gradual increase in CMAP size with increasing stimulus intensity, although one or two discrete steps were sometimes observed in the upper half of the curve, indicating the activation of large MUs at higher intensities. In ALS subjects, large discrete steps, due to loss of MUs and collateral sprouting, were frequently present. Variability of the CMAP responses was greater than baseline variability, indicating variability of MU responses, and at certain levels this variability was up to 100 mu Vms. The stimulus-response curve shows differences between normal and ALS subjects and provides information on MU activation and variability throughout the curve.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All muscle contractions are dependent on the functioning of motor units. In diseases such as amyotrophic lateral sclerosis (ALS), progressive loss of motor units leads to gradual paralysis. A major difficulty in the search for a treatment for these diseases has been the lack of a reliable measure of disease progression. One possible measure would be an estimate of the number of surviving motor units. Despite over 30 years of motor unit number estimation (MUNE), all proposed methods have been met with practical and theoretical objections. Our aim is to develop a method of MUNE that overcomes these objections. We record the compound muscle action potential (CMAP) from a selected muscle in response to a graded electrical stimulation applied to the nerve. As the stimulus increases, the threshold of each motor unit is exceeded, and the size of the CMAP increases until a maximum response is obtained. However, the threshold potential required to excite an axon is not a precise value but fluctuates over a small range leading to probabilistic activation of motor units in response to a given stimulus. When the threshold ranges of motor units overlap, there may be alternation where the number of motor units that fire in response to the stimulus is variable. This means that increments in the value of the CMAP correspond to the firing of different combinations of motor units. At a fixed stimulus, variability in the CMAP, measured as variance, can be used to conduct MUNE using the "statistical" or the "Poisson" method. However, this method relies on the assumptions that the numbers of motor units that are firing probabilistically have the Poisson distribution and that all single motor unit action potentials (MUAP) have a fixed and identical size. These assumptions are not necessarily correct. We propose to develop a Bayesian statistical methodology to analyze electrophysiological data to provide an estimate of motor unit numbers. Our method of MUNE incorporates the variability of the threshold, the variability between and within single MUAPs, and baseline variability. Our model not only gives the most probable number of motor units but also provides information about both the population of units and individual units. We use Markov chain Monte Carlo to obtain information about the characteristics of individual motor units and about the population of motor units and the Bayesian information criterion for MUNE. We test our method of MUNE on three subjects. Our method provides a reproducible estimate for a patient with stable but severe ALS. In a serial study, we demonstrate a decline in the number of motor unit numbers with a patient with rapidly advancing disease. Finally, with our last patient, we show that our method has the capacity to estimate a larger number of motor units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Limb movement imparts a perturbation to the body. The impact of that perturbation is limited via anticipatory postural adjustments. The strategy by which the CNS controls anticipatory postural adjustments of the trunk muscles during limb movement is altered during acute back pain and in people with recurrent back pain, even when they are pain free. The altered postural strategy probably serves to protect the spine in the short term, but it is associated with a cost and is thought to predispose spinal structures to injury in the long term. It is not known why this protective strategy might occur even when people are pain free, but one possibility is that it is caused by the anticipation of back pain. In eight healthy subjects, recordings of intramuscular EMG were made from the trunk muscles during single and repetitive arm movements. Anticipation of experimental back pain and anticipation of experimental elbow pain were elicited by the threat of painful cutaneous stimulation. There was no effect of anticipated experimental elbow pain on postural adjustments. During anticipated experimental back pain, for single arm movements there was delayed activation of the deep trunk muscles and augmentation of at least one superficial trunk muscle. For repetitive arm movements, there was decreased activity and a shift from biphasic to monophasic activation of the deep trunk muscles and increased activity of superficial trunk muscles during anticipation of back pain. In both instances, the changes were consistent with adoption of an altered strategy for postural control and were similar to those observed in patients with recurrent back pain. We conclude that anticipation of experimental back pain evokes a protective postural strategy that stiffens the spine. This protective strategy is associated with compressive cost and is thought to predispose to spinal injury if maintained long term. © Guarantors of Brain 2004; all rights reserved