85 resultados para Money, R. C. (Robert Cotton)
Resumo:
Current serotyping methods classify Pasteurella multocida into five capsular serogroups (serogroups A, B, D, E, and F) and 16 somatic serotypes (serotypes 1 to 16). In the present study, we have developed a multiplex PCR assay as a rapid alternative to the conventional capsular serotyping system. The serogroup-specific primers used in this assay were designed following identification, sequence determination, and analysis of the capsular biosynthetic loci of each capsular serogroup. The entire capsular biosynthetic loci of P. multocida A:1 (X-73) and B:2 (M1404) have been cloned and sequenced previously (J. Y. Chung, Y. M. Zhang, and B. Adler, FEMS Microbiol. Lett. 166:289-296, 1998; J. D. Boyce, J. Y. Chung, and B. Adler, Vet. Microbiol. 72:121-134, 2000). Nucleotide sequence analysis of the biosynthetic region (region 2) from each of the remaining three serogroups, serogroups D, E, and F, identified serogroup-specific regions and gave an indication of the capsular polysaccharide composition. The multiplex capsular PCR assay was highly specific, and its results, with the exception of those for some serogroup F strains, correlated well with conventional serotyping results. Sequence analysis of the strains that gave conflicting results confirmed the validity of the multiplex PCR and indicated that these strains were in fact capsular serogroup A. The multiplex PCR will clarify the distinction between closely related serogroups A and F and constitutes a rapid assay for the definitive classification of P. multocida capsular types
Resumo:
1. An ATP-sensitive K+ (K-ATP) conductance has been identified using the perforated patch recording configuration in a population (52%) of dissociated neurones from adult rat intracardiac ganglia. The presence of the sulphonylurea receptor in approximately half of the intracardiac neurones was confirmed by labelling with fluorescent glibenclamide-BODIPY. 2. Under current clamp conditions in physiological solutions, leveromakalim (10 muM) evoked a hyperpolarization, which was inhibited by the sulphonylurea drugs glibenclamide and tolbutamide. 3. Under voltage clamp conditions in symmetrical (140 mM) K+ solutions, hath application of levcromakalim evoked an inward current with a density of similar to8 pA pF(-1) at -50 mV and a slope conductance of similar to9 nS, which reversed close to the potassium equilibrium potential (E-K). Cell dialysis with an ATP-free intracellular solution also evoked an inward current, which was inhibited by tolbutamide. 4. Bath application of either glibenclamide (10 muM) or tolbutamide (100 muM) depolarized adult intracardiac neurones by 3-5 mV, suggesting that a K-ATP conductance is activated under resting conditions and contributes to the resting membrane potential. 5. Activation of a membrane current by levcromakalim leas concentration dependent, with an EC50 of 1.6 muM. Inhibition of the levcromakalim-activated current by glibenclamide leas also concentration dependent, with an IC50 of 55 nM. 6. Metabolic inhibition with 2,4-dinitrophenol and iodoacetic acid or superfusion with hypoxic solution (P-O2 similar to 16 mmHg) also activated a membrane current. These currents exhibited similar I-P characteristics to the levcroinakalim-induced current and were inhibited by glibenclamide. 7. Activation of K-ATP channels in mammalian intracardiac neurones may contribute to changes in neural regulation of the mature heart and. cardiac function during ischaemia-reperfusion.
Resumo:
The hyperpolarization-activated nonselective cation current, I-h, was investigated in neonatal and adult rat intracardiac neurons. I-h was observed in all neurons studied and displayed slow time-dependent rectification. I-h was isolated by blockade with external Cs+ (2 mM) and was inhibited irreversibly by the bradycardic agent, ZD 7288. Current density of I-h was approximately twofold greater in neurons from neonatal (-4.1 pA/pF at -130 mV) as compared with adult (-2.3 pA/pF) rats; however, the reversal potential and activation parameters were unchanged. The reversal potential and amplitude of I-h was sensitive to changes in external Na+ and K+ concentrations. An inwardly rectifying K+ current, I-K(IR), was also present in intracardiac neurons from adult but not neonatal rats and was blocked by extracellular Ba2+. I-K(IR) was present in approximately one-third of the adult intracardiac neurons studied, with a current density of -0.6 pA/pF at -130 mV. I-K(IR) displayed rapid activation kinetics and no time-dependent rectification consistent with the rapidly activating, inward K+ rectifier described in other mammalian autonomic neurons. I-K(IR) was sensitive to changes in external K+, whereby raising the external K+ concentration from 3 to 15 mM shifted the reversal potential by approximately +36 mV. Substitution of external Na+ had no effect on the reversal potential or amplitude of I-K(IR). I-K(IR) density increases as a function of postnatal development in a population of rat intracardiac neurons, which together with a concomitant decrease in I-h may contribute to changes in the modulation of neuronal excitability in adult versus neonatal rat intracardiac ganglia.
Resumo:
Delivery of endocytosed macromolecules to lysosomes occurs by means of direct fusion of late endosomes with lysosomes. This has been formally demonstrated in a cell-free content mixing assay using late endosomes and lysosomes from rat liver. There is evidence from electron microscopy Studies that the same process occurs in intact cells. The fusion process results in the formation of hybrid organelles from which lysosomes are reformed. The discovery of the hybrid organelle has opened up three areas of investigation: (i) the mechanism of direct fusion of late endosomes and lysosomes, (ii) the mechanism of re-formation of lysosomes from the hybrid organelle, and (iii) the function of the hybrid organelle. Fusion has analogies with homotypic vacuole fusion in yeast. It requires syntaxin 7 as part of the functional trans-SNARE [SNAP receptor, where SNAP is soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein] complex and the release of lumenal calcium to achieve membrane fusion. Reformation of lysosomes from the hybrid organelle occurs by a maturation process involving condensation of lumenal content and probably removal of some membrane proteins by vesicular traffic. Lysosomes may thus be regarded as a type of secretory granule, storing acid hydrolases in between fusion events with late endosomes. The hybrid organelle is predicted to function as a 'cell stomach', acting as a major site of hydrolysis of endocytosed macromolecules.
Resumo:
Emotions in workplace settings and emotional intelligence are hot topics in management today. Leading business journals such as Fortune and Harvard Business Review have featured articles on emotional intelligence. But there is more to emotions in the workplace than just emotional intelligence. The aim of this article is to acquaint managers with intriguing new research that examines both emotional intelligence and the broader issue of emotion, which has been shown to play a powerful role in workplace settings. We show that this research has a strong potential for practical application in organizations within many broad human-resource functions such as selection, performance management, and training, as well as implications for more narrow domains like customer service. We conclude that the study of emotions in organizational settings has provided new and important insights into the way in which people in organizations behave, and we offer advice for managers to enable them to develop and to maintain a positive emotional climate in their organizations.
Resumo:
Cell-surface proteoglycans participate in several biological functions including interactions with a variety of growth factors and cytokines. Regulation of syndecan-1 and -2 gene expression was investigated in human periodontal ligament fibroblasts (PDLF), osteoblasts (OB) and gingival fibroblasts (GF), in response to platelet-derived growth factor (PDGF-BB), transforming growth factor (TGF-beta(1)), and interleukin (IL-1beta) by Northern blot analyses. We also compared the effect of PDGF-BB and TGF-beta(1), separately and in combination, in the prolonged presence of IL-1beta on the expression of both syndecan genes. The results demonstrated that the three cell lines regulated the expression of syndecan-1 and -2 in response to growth factors and cytokines in different manners. These cell lines increased syndecan-1 mRNA levels in response to either PDGF-BB or TGF-beta(1) and decreased levels in response to IL-1beta. The effect of IL-1beta on syndecan-1 mRNA synthesis was partially reversed after adding PDGF-BB and TGF-beta(1), separately or in combination, in the presence of IL-1beta. In contrast, syndecan-2 mRNA level was markedly upregulated in response to either TGF-beta(1) or IL-1beta in OB when compared with the other two cell lines. However, the stimulatory effect of TGF-beta(1) on syndecan-2 mRNA production in OB was abolished in the prolonged presence of IL-1beta. These findings lend support to the notion that syndecan-1 and syndecan-2 have distinct functions which correlate with their source and functions within the periodontium.
Resumo:
Renal cell apoptosis is important not only in normal physiological conditions of the kidney but also in pathological processes. In normal renal development, it removes unwanted, damaged or harmful cells, and in the healthy adult kidney, it maintains cellular homeostasis by regulating the balance between cell proliferation and cell loss. The apoptotic process has now been described in the pathogenesis and prognosis of certain renal diseases with both beneficial and detrimental roles. It causes deletion of cells intrinsic to the kidney after, for example, toxic, ischaemic, immune or radiation damage, and this loss can be destructive and can cause significant reduction of renal function. In contrast, it can control and limit inflammatory processes in both the acute and chronic phases of renal disease. Information on the positive and negative outcomes of renal cell apoptosis, plus the thousands of publications on more general aspects of apoptosis mechanisms, have now presented real opportunities for the development of therapies that selectively delete or protect certain renal cell populations. This review will discuss some of the more general aspects of renal cell apoptosis and then concentrate on the detrimental or beneficial roles of apoptosis in the initiation, progression or resolution of selected, mainly tubulointerstitial, renal diseases.
Resumo:
Patients with chronic liver disease (CLD) are catabolic and GH-resistant. The effects of supraphysiological recombinant human GH (rhGH; 0.2 IU.kg(-1).d(-1)) treatment in adults with CLD were assessed in a randomized, double-blind, placebo-controlled cross-over trial (4-wk dietary run-in, 4-wk treatment, and 2-wk wash-out phases). Nine adults with mild- to moderate-severity CLD participated (median age, 49 yr; three males and six females; Child's classification A in six and B in three). Biopsy-proven etiologies were: alcohol (four patients), primary biliary cirrhosis (three patients), non-A, non-B, non-C hepatitis (one patient), and cryptogenic (one patient). Treatment with rhGH increased serum IGF-I (median increase over placebo, +93 mug.liter(-1); P = 0.004), IGF-binding protein-3 (+0.9 mg.liter(-1): P = 0.004), and acid labile subunit (+10.7 nM; P = 0.004). Total body potassium (+8.0 g; P = 0.023), body weight (+1.6 kg; P = 0.008), and total body water (by bioelectrical impedance; +4.9 kg; P = 0.004) increased. Resting metabolic rate (+313 ml.kg(-1).min(-1); P = 0.004) and lipid oxidation (+1072.0 kcal.d(-1); P = 0.032) increased. Metabolic changes included increased fasting plasma glucose (+1.2 mm; P = 0.008), insulin (+33.8 mU.liter(-1); P = 0.004), C-peptide (+0.7 nM; P = 0.004), and free-fatty acids (+0.1 mEq.liter(-1); P = 0.04). Clinical side effects included worsening edema and ascites. Hepatocellular function did not change. Therefore, rbGH treatment in CLD: 1) overcame hepatic GH resistance; 2) may have improved whole-body protein catabolism; 3) increased lipolysis and lipid oxidation; 4) increased insulin resistance; and 5) had potent antinatriuretic effects. Long-term safety and efficacy require further assessment.
Resumo:
We assayed the pattern of mitoehondrial DNA evolution in the live bearing, seagrass specialist pipefish, Urocampus carinirostris, in eastern Australia. These life history attributes were predicted to result in strong phylogeographic structure in U. carinirostris. Phylogenetic analysis of cytochrome b sequences detected two monophyletic mtDNA clades that differed by 8.69% sequence divergence - a large level of intraspecific divergence for a marine fish. The geographical distribution of clades was non-random and resembled clinal secondary intergradation over a 130-km stretch of coastline. Contrary to phylogeographic predictions, this large phylogeographic break does not occur across a traditionally recognised biogeographic boundary. Analyses of historical demography suggested that individuals belonging to the most widespread clade underwent a population expansion from a small refuge population during the Pleistocene.
Resumo:
Dr. Jules Cotard (1840-1889) was a Parisian neurologist who first described the delire des negations. Cotard's syndrome or Cotard's delusion comprises any one of a series of delusions ranging from the fixed and unshakable belief that one has lost organs, blood, or body parts to believing that one has lost one's soul or is dead. In its most profound form, the delusion takes the form of a professed belief that one does not exist. Encountered primarily in psychoses such as schizophrenia and bipolar disorder, Cotard's syndrome has also been described in organic lesions of the nondominant temporoparietal cortex as well as in migraine. Cotard's delusion is the only self-certifiable syndrome of delusional psychosis. Jules Cotard, a Parisian neurologist and psychiatrist and former military surgeon, was one of the first to induce cerebral atrophy by the experimental embolization of cerebral arteries in animals and a pioneer in studies of the clinicopathologic correlates of cerebral atrophy secondary to perinatal and postnatal pathologic changes. He was the first to record that unilateral cerebral atrophy in infancy does not necessarily lead to aphasia and was also the pioneer of studies of altered conscious states in diabetic hyperglycemia.
Resumo:
Breast screening programmes have facilitated more conservative approaches to the surgical and radiotherapy management of women diagnosed with breast cancer. This study investigated changes in shoulder movement after surgery for primary, operable breast cancer to determine the effect of elective physiotherapy intervention. Sixty-five women were randomly assigned to either the treatment (TG) or control group (CG) and assessments were completed preoperatively, at day 5 and at 1 month, 3, 6, 12 and 24 months postoperatively. The CG only received an exercise instruction booklet in comparison to the TG who received the Physiotherapy Management Care Plan (PMCP). Analyses of variance revealed that abduction returned to preoperative levels more quickly in the TG than in the CG. The TG women had 14degrees more abduction at 3 months and 7degrees at 24 months. Functional recovery at 1 month was greater in those randomised to the TG, with a dominant operated arm (OA) or receiving breast-conserving surgery. However, it was not possible to predict recovery over the 2 years postoperatively on the basis of an individual woman's recovery at 1 month postoperatively. The eventual recovery of abduction or flexion range of movement was not related to the dominance of the OA nor to the surgical procedure performed. The PMCP provided in the early postoperative period is effective in facilitating and maintaining the recovery of shoulder movement over the first 2 years after breast cancer surgery.