49 resultados para Memory usage
Resumo:
Passive avoidance learning is with advantage studied in day-old chicks trained to distinguish between beads of two different colors, of which one at training was associated with aversive taste. During the first 30-min post-training, two periods of glutamate release occur in the forebrain. One period is immediately after the aversive experience, when glutamate release is confined to the left hemisphere. A second release, 30 min later, may be bilateral, perhaps with preponderance of the right hemisphere. The present study showed increased pool sizes of glutamate and glutamine, specifically in the left hemisphere, at the time when the first glutamate release occurs, indicating de novo synthesis of glutamate/glutamine from glucose or glycogen, which are the only possible substrates. Behavioral evidence that memory is extinguished by intracranial administration at this time of iodoacetate, an inhibitor of glycolysis and glycogenolysis, and that the extinction of memory is counteracted by injection of glutamine, supports this concept. A decrease in forebrain glycogen of similar magnitude and coinciding with the increase in glutamate and glutamine suggests that glycogen rather than glucose is the main source of newly synthesized glutamate/glutamine. The second activation of glutamatergic activity 30 min after training, when memory is consolidated into stable, long-term memory, is associated with a bilateral increase in pool size of glutamate/glutamine. No glycogenolysis was observed at this time, but again there is a temporal correlation with sensitivity to inhibition by iodoacetate and rescue by glutamine, indicating the importance of de novo synthesis of glutamate/glutamine from glucose or glycogen. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
We analyzed the codon usage bias of eight open reading frames (ORFs) across up to 79 human papillomavirus (HPV) genotypes from three distinct phylogenetic groups. All eight ORFs across HPV genotypes show a strong codon usage bias, amongst degenerately encoded amino acids, toward 18 codons mainly with T at the 3rd position. For all 18 degenerately encoded amino acids, codon preferences amongst human and animal PV ORFs are significantly different from those averaged across mammalian genes. Across the HPV types, the L2 ORFs show the highest codon usage bias (73.2 +/- 1.6% and the E4 ORFs the lowest (51.1 +/- 0.5%), reflecting as similar bias in codon 3rd position A + T content (L2: 76.1 +/- 4.2%; E4: 58.6 +/- 4.5%). The E4 ORF, uniquely amongst the HPV ORFs, is G + C rich, while the other ORFs are A + T rich. Codon usage bias correlates positively with A + T content at the codon 3rd position in the E2, E6, L1 and L2 ORFs, but negatively in the E4 ORFs. A general conservation of preferred codon usage across human and non-human PV genotypes whether they originate from a same supergroup or not, together with observed difference between the preferred codon usage for HPV ORFs and for genes of the cells they infect, suggests that specific codon usage bias and A + T content variation may somehow increase the replicational fitness of HPVs in mammalian epithelial cells, and have practical implications for gene therapy of HPV infection. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The outcome of dendritic cell (DC) presentation of Ag to T cells via the TCR/MHC synapse is determined by second signaling through CD80/86 and, importantly, by ligation of costimulatory ligands and receptors located at the DC and T cell surfaces. Downstream signaling triggered by costimulatory molecule ligation results in reciprocal DC and T cell activation and survival, which predisposes to enhanced T cell-mediated immune responses. In this study, we used adenoviral vectors to express a model tumor Ag (the E7 oncoprotein of human papillomavirus 16) with or without coexpression of receptor activator of NF-kappaB (RANK)/RANK ligand (RANKL) or CD40/CD40L costimulatory molecules, and used these transgenic DCs to immunize mice for the generation of E7-directed CD8(+) T cell responses. We show that coexpression of RANK/RANKL, but not CD40/CD40L, in E7-expressing DCs augmented E7-specific IFN-gamma-secreting effector and memory T cells and E7-specific CTLs. These responses were also augmented by coexpression of T cell costimulatory molecules (RANKL and CD40L) or DC costimulatory molecules (RANK and CD40) in the E7-expressing DC immunogens. Augmentation of CTL responses correlated with up-regulation of CD80 and CD86 expression in DCs transduced with costimulatory molecules, suggesting a mechanism for enhanced T cell activation/survival. These results have generic implications for improved tumor Ag-expressing DC vaccines, and specific implications for a DC-based vaccine approach for human papillomavirus 16-associated cervical carcinoma.