50 resultados para Matter Waves
Resumo:
Solid-state C-13 nuclear magnetic resonance (NMR) with cross-polarisation (CP) and magic-angle-spinning (MAS) was used to: (a) examine the changes in carbon (C) composition of windrowed harvest residues during the first 3 years of hoop pine plantations in subtropical Australia; (b) assess the impacts of windrowed harvest residues on soil organic matter (SOM) composition and quality in the 0-10 cm soil layer. Harvest residues were collected from 0-, 1-, 2- and 3-year-old windrows of ca. 2.5 m width (15 m apart for 0-, 1- and 2-year-old sites and 10 m apart for 3-year-old site). Soils from the 0 to 10 cm soil layer were collected from the 1-, 2- and 3-year-old sites. The 13C NMR spectra of the harvest residues indicated the presence of lignin in the hoop pine wood, foliage and newly incorporated organic matter (NIOM). Condensed tannin structures were found in the decay-resistant bark, small wood and foliage, but were absent in other residue components and SOM. The NMR spectra of small wood samples contained condensed tannin structures because the outer layer of bark was not removed. NIOM showed a shift from foliage-like structures (celluloses) to lignin-type structures, indicating an incorporation of woody residues from the decomposing harvest residues. Suberins were also present in the small wood, foliage and bark. The 13C CP NMR spectra of SOM indicated that in areas where windrows were present, SOM did not show compositional changes. However, an increase in SOM quality under the windrows in the second year after their formation as characterised by the alkyl C/O-alkyl C (A/O-A) ratio was mainly due to inputs from the decomposition of the labile, readily available components of the windrowed harvest residues. (C) 2002 Published by Elsevier Science B.V.
Resumo:
This study investigated the influence of harvest residue management practices on soil organic matter (SOM) composition and quality from two second-rotation Eucalyptus globulus plantations in southwestern Australia, using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy with cross-polarisation and magic-angle-spinning (CPMAS). Soil samples (0–5 cm) were collected every 12 months for 5 years from two sites that had contrasting soil types and fertility. Harvest residue management treatments established at both sites were (a) no harvest residues; and (b) double harvest residues. The use of 13C CPMAS and DD NMR spectroscopy enabled the successful non-destructive detection of SOM quality changes in the two E. globulus plantations. Relative intensities of 13C CPMAS NMR spectral regions were similar at both sites, and for both harvest residue treatments, indicating that SOM composition was also similar. Dipolar dephasing (DD) NMR spectra revealed resonances in SOM assigned to lignin and tannin structures, with larger resonances in the carbonyl and alkyl C regions that were indicative of cuticular material, enabling detection of changes in SOM quality. Retention of double harvest residues on the soil surface increased the soil quality compared with removal of all harvest residues at both sites as indicated by the NMR aromaticities, but this was most noticeable at Manjimup, which had greater initial soil fertility.
Resumo:
We detected and mapped a dynamically spreading wave of gray matter loss in the brains of patients with Alzheimer's disease (AD). The loss pattern was visualized in four dimensions as it spread over time from temporal and limbic cortices into frontal and occipital brain regions, sparing sensorimotor cortices. The shifting deficits were asymmetric (left hemisphere >right hemisphere) and correlated with progressively declining cognitive status ( p 15% loss). The maps distinguished different phases of AD and differentiated AD from normal aging. Local gray matter loss rates (5.3 +/- 2.3% per year in AD v 0.9 +/- 0.9% per year in controls) were faster in the left hemisphere ( p < 0.029) than the right. Transient barriers to disease progression appeared at limbic/frontal boundaries. This degenerative sequence, observed in vivo as it developed, provides the first quantitative, dynamic visualization of cortical atrophic rates in normal elderly populations and in those with dementia.
Resumo:
[1] Comprehensive measurements are presented of the piezometric head in an unconfined aquifer during steady, simple harmonic oscillations driven by a hydrostatic clear water reservoir through a vertical interface. The results are analyzed and used to test existing hydrostatic and nonhydrostatic, small-amplitude theories along with capillary fringe effects. As expected, the amplitude of the water table wave decays exponentially. However, the decay rates and phase lags indicate the influence of both vertical flow and capillary effects. The capillary effects are reconciled with observations of water table oscillations in a sand column with the same sand. The effects of vertical flows and the corresponding nonhydrostatic pressure are reasonably well described by small-amplitude theory for water table waves in finite depth aquifers. That includes the oscillation amplitudes being greater at the bottom than at the top and the phase lead of the bottom compared with the top. The main problems with respect to interpreting the measurements through existing theory relate to the complicated boundary condition at the interface between the driving head reservoir and the aquifer. That is, the small-amplitude, finite depth expansion solution, which matches a hydrostatic boundary condition between the bottom and the mean driving head level, is unrealistic with respect to the pressure variation above this level. Hence it cannot describe the finer details of the multiple mode behavior close to the driving head boundary. The mean water table height initially increases with distance from the forcing boundary but then decreases again, and its asymptotic value is considerably smaller than that previously predicted for finite depth aquifers without capillary effects. Just as the mean water table over-height is smaller than predicted by capillarity-free shallow aquifer models, so is the amplitude of the second harmonic. In fact, there is no indication of extra second harmonics ( in addition to that contained in the driving head) being generated at the interface or in the interior.
Resumo:
The influence of near-bed sorting processes on heavy mineral content in suspension is discussed. Sediment concentrations above a rippled bed of mixed quartz and heavy mineral sand were measured under regular nonbreaking waves in the laboratory. Using the traditional gradient diffusion process, settling velocity would be expected to strongly affect sediment distribution. This was not observed during present trials. In fact, the vertical gradients of time-averaged suspension concentrations were found to be similar for the light and heavy minerals, despite their different settling velocities. This behavior implies a convective rather than diffusive distribution mechanism. Between the nonmoving bed and the lowest suspension sampling point, fight and heavy mineral concentration differs by two orders of magnitude. This discrimination against the heavy minerals in the pickup process is due largely to selective entrainment at the ripple face. Bed-form dynamics and the nature of quartz suspension profiles are found to be little affected by the trialed proportion of overall heavy minerals in the bed (3.8-22.1%).