70 resultados para Marsupialia. Marsupials
Resumo:
We describe the patterns of paternity success from laboratory mating experiments conducted in Antechinus agilis, a small size dimorphic carnivorous marsupial (males are larger than females). A previous study found last-male sperm precedence in this species, but they were unable to sample complete Utters, and did not take male size and relatedness into account. We tested whether last-male sperm precedence regardless of male size still holds for complete litters. We explored the relationship between male mating order, male size, timing of mating and relatedness on paternity success. Females were mated with two males of different size with either the large or the small male first, with 1 day rest between the matings. Matings continued for 6 h. in these controlled conditions male size did not have a strong effect on paternity success, but mating order did. Males mating second sired 69.5% of the offspring. Within first mated males, males that mated closer to ovulation sired more offspring, To a lesser degree, variation appeared also to be caused by differences in genetic compatibility of the female and the male, where high levels of allele-sharing resulted in lower paternity success.
Resumo:
As in eutherians, maturation of the fetal pituitary and adrenal glands together with an increase in prostaglandin and mesotocin or oxytocin production initiates birth in marsupials. in this study, prostaglandin (Lutalyse) or oxytocin (Syntocinon) were administered to pregnant bandicoots at 05:00 h on the calculated day of birth and the resultant effects were filmed for analysis. The administration of prostaglandin caused the bandicoot to adopt the birth position several minutes after injection (n = 2). However, the bandicoot did not give birth for several hours. Birth occurred at a similar time of day to that observed for untreated bandicoots (n = 7), between 08:00 h and 12:00 h. After an injection of oxytocin, the bandicoot assumed the birth position and birth occurred within several minutes. The young were alive while still connected to their allantoic stalks. However, they were unable to attach to the teats and did not survive (n = 4). The induced young were the colour of venous blood and died soon after the umbilicus was separated, indicating that the cardiopulmonary system of these neonates was underdeveloped and inadequate to maintain life. The results from this study demonstrate that prostaglandin is required to prepare the bandicoot for birth, and mesotocin is required for contraction of the uterus and for birth to occur.
Resumo:
This is the first documented study of the anatomical details of the contents of the normal koala orbit, excluding the bulbus oculi. Baseline data were established which are necessary for understanding and treating ocular disease in the koala (Phascolarctos cinereus). The anatomy of the orbital contents of the koala were examined and described from animals that presented dead or were euthanized for humane reasons. Dissections of the orbital cavity were performed under magnification. Polymethyl methacrylate (PMMA) casts of the nasolacrimal system and the vascular supply of the orbit were also made in order to study these systems. The superficial lymphatic drainage of the conjunctival tissues was studied by subcutaneous injection of Evan's Blue into the palpebral conjunctiva of a freshly deceased animal, and by Microfil casts of the efferent lymphatics. In general, the orbital contents of the koala are consistent with those of other carnivorous polyprotodont and herbivorous diprotodont marsupials.
Resumo:
This is the first documented study of the anatomical details of the normal koala orbit. Baseline data are established which are necessary for understanding and treating ocular disease in the koala (Phascolarctos cinereus). The bony anatomy of the orbit of the koala was examined and described from animals that presented dead or had been euthanized for humane reasons. Dissections of the orbital cavity were performed under magnification, and descriptions of the orbital bones were from macerated skulls that had been boiled and cleaned, In general, the orbital bones of the koala, and their respective foramina, are consistent with those of other carnivorous polyprotodont and herbivorous diprotodont marsupials.
Resumo:
Until the recent establishment of Angiostrongylus cantonensis in North America. Australia was the only developed region endemic for this parasite. Almost 50 years ago the life cycle was elucidated there, in the city of Brisbane, and the first human infections probably occurred in 1959. From the 1970s, increasing numbers of autochthonous infections have been reported along the central east coast of the continent (southeast Queensland and northern New South Wales), involving humans, rats, dogs, horses, flying foxes and marsupials. Ten years ago, the parasite was discovered in Sydney, almost 1,000 km to the south, in dogs. In that city, it has since been diagnosed as a cause of neurological disease in increasing numbers of dogs, flying foxes, marsupials and zoo primates. Presumably, these infections resulted from the ingestion of snails or slugs, and it seems that virtually all species of native and exotic terrestrial molluscs can serve as intermediate hosts. It is not known how the parasite was introduced to this continent, or how it has spread over such an extensive territory, although eventually its range could encompass the entire east coast, and potentially other regions. It is also not known if the almost identical, native species, A. mackerrasae, is able to infect people (or other non-rodent hosts). All worms recovered to date, from one fatal human case, and from many animal infections, have been confirmed as A. cantonensis.
Resumo:
Macropodid herpesvirus 1 (MaHV-1) is an unclassified alphaherpesvirus linked with the fatal infections of kangaroos and other marsupials. During the characterisation of the internal repeat region of MaHV-1, an open reading frame (ORF) encoding for thymidylate synthase (TS) gene was identified and completely sequenced. Southern blot analysis confirmed the presence of two copies of the TS gene in the MaHV-1 genome as expected. Computer analysis of the TS ORF showed it was 948 nucleotides in length. A putative polyadenylation signal was identified 17-22 bp inside the ORF implying a minimal or absent 3' untranslated region. The predicted polypeptide was 316 amino acid residues in length and contained the highly conserved motifs for folate binding and F-dUMP binding, typical of all TS enzymes. Interestingly, MaHV-1 TS polypeptide had highest similarity to the human TS polypeptide (81%) compared to the TS polypeptides of other herpesviruses (72-75%). Immediately upstream of the TS gene, a second ORF of 510 bp, encoding a polypeptide with 170 amino acid residues, was identified. The carboxyl domain of this MaHV-1 polypeptide shared 68% similarity to a 59 amino acid motif of human herpesvirus 1 ICP34.5, identifying it as the MaHV-1 ICP34.5 homologue. This is the first report of a herpesvirus that encodes for both TS and ICP34.5.
Resumo:
Maturation of the fetal pituitary and adrenal glands allows the secretion of cortisol, which in turn leads to an increase in prostaglandin and mesotocin production. The production of prostaglandin and mesotocin results in an increase in uterine contractions and initiates birth in marsupials. The major metabolite of PGF(2alpha), 13,14-dihydro-15-keto-prostaglandin F-2alpha (PGFM), has been found in the plasma of the possum at the time of birth and administration of PGF(2alpha) to female possums induced the adoption of the birth position. Evidence that mesotocin is an integral hormone of birth in the tammar wallaby indicates that both PGF(2alpha) and mesotocin or oxytocin are required for marsupial birth. The presence of PGF(2alpha) receptors in the uterus and corpus luteum of the possum, and the in vitro uterine responsiveness to PGF(2alpha) or oxytocin, were examined. PGF(2alpha) receptors were not observed in possum uteri and the inability of PGF(2alpha) to cause contractions indicates that PGF(2alpha) is not involved directly in contraction of the uterus at parturition. The presence of oxytocin and mesotocin receptors in the uterus of possoms and the ability of oxytocin to induce uterine contraction in vitro supports the view that mesotocin is required for expulsion of the young from the uterus. Low numbers of PGF(2alpha) receptors were found in the possum corpus luteum at birth, indicating an involvement of PGF(2alpha) in regression of the corpus luteum.
Resumo:
It is becoming increasingly clear that species of smaller body size tend to be less vulnerable to contemporary extinction threats than larger species, but few studies have examined the mechanisms underlying this pattern. In this paper, data for the Australian terrestrial mammal fauna are used to ask whether higher reproductive output or smaller home ranges can explain the reduced extinction risk of smaller species. Extinct and endangered species do indeed have smaller litters and larger home ranges for their body size than expected under a null model. In multiple regressions, however, only litter size is a significant predictor of extinction risk once body size and phylogeny are controlled for. Larger litters contribute to fast population growth, and are probably part of the reason that smaller species are less extinction-prone. The effect of litter size varies between the mesic coastal regions and the and interior of Australia, indicating that the environment a species inhabits mediates the effect of biology on extinction risk. These results suggest that predicting extinction risk from biological traits is likely to be a complex task which must consider explicitly interactions between biology and environment.
Resumo:
Japanese encephalitis (JE) virus spread to northern Australia during the 1990s, transmitted by Culex annulirostris Skuse and other mosquitoes (Diptera: Culicidae). To determine the relative importance of various hosts for potential vectors of JE virus, we investigated the host-feeding patterns of mosquitoes in northern Australia and Western Province of Papua New Guinea, with particular attention to pigs, Sus scrofa L. - the main amplifying host of JE virus in South-east Asia. Mosquitoes were collected by CDC light traps baited with dry ice and 1-octen-3-ol, run 16.00-08.00 hours, mostly set away from human habitations, if possible in places frequented by feral pigs. Bloodmeals of 2569 mosquitoes, representing 15 species, were identified by gel diffusion assay. All species had fed mostly on mammals: only 30%) were trapped where domestic pigs were kept close to human habitation. From seven of eight locations on the Australian mainland, the majority of Cx. annulirostris had obtained their bloodmeals from marsupials, probably the Agile wallaby Macropus agilis (Gould). Overall proportions of mosquito bloodmeals identified as marsupial were 60% from the Gulf Plains region of Australia, 78% from the Cape York Peninsula and 64% from the Daru area of Papua New Guinea. Thus, despite the abundance of feral pigs in northern Australia, our findings suggest that marsupials divert host-seeking Cx. annulirostris away from pigs. As marsupials are poor JE virus hosts, the prevalence of marsupials may impede the establishment of JE virus in Australia.
Resumo:
Accurate estimates of body mass in fossil taxa are fundamental to paleobiological reconstruction. Predictive equations derived from correlation with craniodental and body mass data in extant taxa are the most commonly used, but they can be unreliable for species whose morphology departs widely from that of living relatives. Estimates based on proximal limb-bone circumference data are more accurate but are inapplicable where postcranial remains are unknown. In this study we assess the efficacy of predicting body mass in Australian fossil marsupials by using an alternative correlate, endocranial volume. Body mass estimates for a species with highly unusual craniodental anatomy, the Pleistocene marsupial lion (Thylacoleo carnifex), fall within the range determined on the basis of proximal limb-bone circumference data, whereas estimates based on dental data are highly dubious. For all marsupial taxa considered, allometric relationships have small confidence intervals, and percent prediction errors are comparable to those of the best predictors using craniodental data. Although application is limited in some respects, this method may provide a useful means of estimating body mass for species with atypical craniodental or postcranial morphologies and taxa unrepresented by postcranial remains. A trend toward increased encephalization may constrain the method's predictive power with respect to many, but not all, placental clades.
Resumo:
To examine the effects of recent habitat fragmentation, we assayed genetic diversity in a rain forest endemic lizard, the prickly forest skink (Gnypetoscincus queenslandiae), from seven forest fragments and five sites in continuous forest on the Atherton tableland of northeastern Queensland, Australia. The rain forest in this region was fragmented by logging and clearing for dairy farms in the early 1900s and most forest fragments studied have been isolated for 50-80 years or nine to 12 skink generations. We genotyped 411 individuals at nine microsatellite DNA loci and found fewer alleles per locus in prickly forest skinks from small rain forest fragments and a lower ratio of allele number to allele size range in forest fragments than in continuous forest, indicative of a decrease in effective population size. In contrast, and as expected for populations with small neighbourhood sizes, neither heterozygosity nor variance in allele size differed between fragments and sites in continuous forests. Considering measures of among population differentiation, there was no increase in F-ST among fragments and a significant isolation by distance pattern was identified across all 12 sites. However, the relationship between genetic (F-ST) and geographical distance was significantly stronger for continuous forest sites than for fragments, consistent with disruption of gene flow among the latter. The observed changes in genetic diversity within and among populations are small, but in the direction predicted by the theory of genetic erosion in recently fragmented populations. The results also illustrate the inherent difficulty in detecting genetic consequences of recent habitat fragmentation, even in genetically variable species, and especially when effective population size and dispersal rates are low.
Resumo:
Phylogenetic studies of the genus Macropodinium were conducted using two methods; phenetics and cladistics. The phenetic study of morphometrics suggested that the genus could be divided into 3 groups attributable mostly to cell size and shape. The cladistic study also split the genus into 3 groups related to cell size but groups were further distinguished by patterns of ornamentation. Reconciliation of both approaches revealed considerable congruence, however, it also suggested the existence of convergences in the phenetic study and a lack of resolution in the cladistic study. The morphological diversity of Macropodinium is probably due to evolutionary trends such as increasing body size, allometry and polymerisation of structures. None of these trends, however, was uniformly directional and differential effects were observed in different regions of the phylogenetic tree. Comparison of the phylogeny of Macropodinium to a consensus phylogeny of the macropodids revealed limited incongruence between the 2 trees. The ciliate groups could be related to 2 host groups; the wallaby genera and the kangaroo and wallaroo subgenera. The association with these host groups may be the result of phyletic codescent, ecological resource tracking or a combination of both. Further studies of both host and ciliate phylogeny are necessary to resolve these effects.
Resumo:
Gait repertoires of the northern brown bandicoot, Isoodon macrourus, were studied over a wide range of locomotor speeds. At low relative speeds, bandicoots used symmetrical gaits that included pacing, trotting, and lateral sequence strides. Forefoot contact duration was generally shorter than hind foot contact duration at all speeds. At moderate relative speeds bandicoots used half-bounding gaits with either no period of suspension or with a short gathered suspension. At high speeds the predominant gait had both a short extended and a short gathered suspension, although some strides comprised only an extended suspension. Increases in speed were accompanied by increases in spinal extension, presumably leading to the extended suspensions. On a stationary treadmill individuals occasionally used a bipedal gait. Maximum half-bounding speeds appear to be relatively low in this species.
Resumo:
Translocation is an important tool for the conservation of species that have suffered severe range reductions. The success of a translocation should be measured not only by the survival of released animals, but by the reproductive output of individuals and hence the establishment of a self-sustaining population. The bridled nailtail wallaby is an endangered Australian macropod that suffered an extensive range contraction to a single remaining wild population. A translocated population was established and subsequently monitored over a four year period. The aim of this study was to measure the reproductive success of released males using genetic tools and to determine the factors that predicted reproductive success. Captive-bred and wild-caught animals were released and we found significant variation in male reproductive success among release groups. Variation in reproductive success was best explained by individual male weight, survival and release location rather than origin. Only 26% of candidate males were observed to sire an offspring during the study. The bridled nailtail wallaby is a sexually dimorphic, polygynous macropod and reproductive success is skewed toward large males. Males over 5800 g were six times more likely to sire an offspring than males below this weight. This study highlights the importance of considering mating system when choosing animals for translocation. Translocation programs for polygynous species should release a greater proportion of females, and only release males of high breeding potential. By maximizing the reproductive output of released animals, conservation managers will reduce the costs of translocation and increase the chance of successfully establishing a self-sustaining population. (C) 2004 Elsevier Ltd. All rights reserved.