49 resultados para Load flow with step size optimization
Resumo:
High index Differential Algebraic Equations (DAEs) force standard numerical methods to lower order. Implicit Runge-Kutta methods such as RADAU5 handle high index problems but their fully implicit structure creates significant overhead costs for large problems. Singly Diagonally Implicit Runge-Kutta (SDIRK) methods offer lower costs for integration. This paper derives a four-stage, index 2 Explicit Singly Diagonally Implicit Runge-Kutta (ESDIRK) method. By introducing an explicit first stage, the method achieves second order stage calculations. After deriving and solving appropriate order conditions., numerical examples are used to test the proposed method using fixed and variable step size implementations. (C) 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.
Resumo:
In this paper, we report our modelling evaluation on the effect of tracer density on axial dispersion in a batch oscillatory baffled column (OBC). Tracer solution of potassium nitrite, its specific density ranged from 1.0 to 1.5, was used in the study, and was injected to the vertical column from either the top or bottom. Local concentration profiles are measured using conductivity probes at two locations along the height of the column. Using the experimental measured concentration profiles together with both 'Tank-in-Series' and 'Plug Flow with Axial Dispersion' models, axial dispersion coefficients were determined and used to describe the effect of specific tracer density on mixing in the OBC. The results showed that the axial dispersion coefficients evaluated by the two models are very similar in both magnitudes and trends, and the range of variations in such coefficients is generally larger for the bottom injection than for the top one. Empirical correlations linking the mechanical energy for mixing, the specific density of tracer and axial dispersion coefficient were established. Using these correlations, we identified the enhancements of up to 269% on axial dispersion for various specific tracer densities. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
An important feature of improving lattice gas models and classical isotherms is the incorporation of a pore size dependent capacity, which has hitherto been overlooked. In this paper, we develop a model for predicting the temperature dependent variation in capacity with pore size. The model is based on the analysis of a lattice gas model using a density functional theory approach at the close packed limit. Fluid-fluid and solid-fluid interactions are modeled by the Lennard-Jones 12-6 potential and Steele's 10-4-3, potential respectively. The capacity of methane in a slit-shaped carbon pore is calculated from the characteristic parameters of the unit cell, which are extracted by minimizing the grand potential of the unit cell. The capacities predicted by the proposed model are in good agreement with those obtained from grand canonical Monte Carlo simulation, for pores that can accommodate up to three adsorbed layers. Single particle and pair distributions exhibit characteristic features that correspond to the sequence of buckling and rhombic transitions that occur as the slit pore width is increased. The model provides a useful tool to model continuous variation in the microstructure of an adsorbed phase, namely buckling and rhombic transitions, with increasing pore width. (C) 2002 American Institute of Physics.
Resumo:
We investigate difference equations which arise as discrete approximations to two-point boundary value problems for systems of second-order, ordinary differential equations. We formulate conditions under which all solutions to the discrete problem satisfy certain a priori bounds which axe independent of the step-size. As a result, the nonexistence of spurious solutions are guaranteed. Some existence and convergence theorems for solutions to the discrete problem are also presented. (C) 2002 Elsevier Science Ltd. All rights reserved.