81 resultados para Ionic liquid-functionalized silica
Resumo:
We have utilised the combination of sensitivity and specificity afforded by coupling high-performance liquid chromatography (HPLC) to a tandem mass spectrometer (MS-MS) to produce an assay which is suitable for assaying glutathione (GSH) concentrations in liver tissue. The sensitivity suggests it may also be suitable for extrahepatic tissues, The method has been validated for GSH using mouse liver samples and also allows the assay of GSSG. The stability of GSH under conditions relevant to the assay has been determined. A 20-mul amount of a diluted methanol extract of tissue is injected with detection limits of 0.2 pmol for GSH and 2 pmol for GSSG. The HPLC uses an Altima C-18 (150X4.6 mm, 5 mum) column at 35 degreesC. Chromatography utilises a linear gradient from 0 to 10% methanol in 0.1% formic acid over 5 min, with a final isocratic stage holding at 10% methanol for 5 min. Total flow rate is 0.8 ml/min. The transition from the M+H ion (308.1 m/z for GSH, and 613.3 m/z for GSSG) to the 162.0 m/z (GSH) and 355.3 m/z (GSSG) fragments are monitored. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Large chemical libraries can be synthesized on solid-support beads by the combinatorial split-and-mix method. A major challenge associated with this type of library synthesis is distinguishing between the beads and their attached compounds. A new method of encoding these solid-support beads, 'colloidal bar-coding', involves attaching fluorescent silica colloids ('reporters') to the beads as they pass through the compound synthesis, thereby creating a fluorescent bar code on each bead. In order to obtain sufficient reporter varieties to bar code extremely large libraries, many of the reporters must contain multiple fluorescent dyes. We describe here the synthesis and spectroscopic analysis of various mono- and multi-fluorescent silica particles for this purpose. It was found that by increasing the amount of a single dye introduced into the particle reaction mixture, mono- fluorescent silica particles of increasing intensities could be prepared. This increase was highly reproducible and was observed for six different fluorescent dyes. Multi-fluorescent silica particles containing up to six fluorescent dyes were also prepared. The resultant emission intensity of each dye in the multi-fluorescent particles was found to be dependent upon a number of factors; the hydrolysis rate of each silane-dye conjugate, the magnitude of the inherent emission intensity of each dye within the silica matrix, and energy transfer effects between dyes. We show that by varying the relative concentration of each silane-dye conjugate in the synthesis of multi-fluorescent particles, it is possible to change and optimize the resultant emission intensity of each dye to enable viewing in a fluorescence detection instrument.
Resumo:
This article modifies the usual form of the Dubinin-Radushkevich pore-filling model for application to liquid-phase adsorption data, where large molecules are often involved. In such cases it is necessary to include the repulsive part of the energy in the micropores, which is accomplished here by relating the pore potential to the fluid-solid interaction potential. The model also considers the nonideality of the bulk liquid phase through the UNIFAC activity coefficient model, as well as structural heterogeneity of the carbon. For the latter the generalized adsorption integral is used while incorporating the pore-size distribution obtained by density functional theory analysis of argon adsorption data. The model is applied here to the interpretation of aqueous phase adsorption isotherms of three different esters on three commercial activated carbons. Excellent agreement between the model and experimental data is observed, and the fitted Lennard-Jones size parameter for the adsorbate-adsorbate interactions compares well with that estimated from known critical properties, supporting the modified approach. On the other hand, the model without consideration of bulk nonideality, or when using classical models of the characteristic energy, gives much poorer bts of the data and unrealistic parameter values.
Resumo:
The characterization of three commercial activated carbons was carried out using the adsorption of various compounds in the aqueous phase. For this purpose the generalized adsorption isotherm was employed, and a modification of the Dubinin-Radushkevich pore filling model, incorporating repulsive contributions to the pore potential as well as bulk liquid phase nonideality, was used as the local isotherm. Eight different flavor compounds were used as adsorbates, and the isotherms were jointly fitted to yield a common pore size distribution for each carbon. The bulk liquid phase nonideality was incorporated through the UNIFAC activity coefficient model, and the repulsive contribution to the pore potential was incorporated through the Steele 10-4-3 potential model. The mean micropore network coordination number for each carbon was also determined from the fitted saturation capacity based on percolation theory. Good agreement between the model and the experimental data was observed. In addition, excellent agreement between the bimodal gamma pore size distribution and density functional theory-cum-regularization-based pore size distribution obtained by argon adsorption was also observed, supporting the validity of the model. The results show that liquid phase adsorption, using adsorptive molecules of different sizes, can be an effective means of characterizing the pore size distribution as well as connectivity. Alternately, if the carbon pore size distribution is independently known, the method can be used to measure critical molecular sizes. (C) 2001 Elsevier Science.
Resumo:
A modification of the Dubinin-Radushkevich pore filling model by incorporation of the repulsive contribution to the pore potential, and of bulk non-ideality, is proposed in this paper for characterization of activated carbon using liquid phase adsorption. For this purpose experiments have been performed using ethyl propionate, ethyl butyrate, and ethyl isovalerate as adsorbates and the microporous-mesoporous activated carbons Filtrasorb 400, Norit ROW 0.8 and Norit ROX 0.8 as adsorbents. The repulsive contribution to the pore potential is incorporated through a Lennard-Jones intermolecular potential model, and the bulk-liquid phase non-ideality through the UNIFAC activity coefficient model. For the characterization of activated carbons, the generalized adsorption isotherm is utilized with a bimodal gamma function as the pore size distribution function. It is found that the model can represent the experimental data very well, and significantly better than when the classical energy-size relationship is used, or when bulk non-ideality is neglected. Excellent agreement between the bimodal gamma pore size distribution and DFT-cum-regularization based pore size distribution is also observed, supporting the validity of the proposed model. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Silica xerogels were prepared by a sol-gel process catalyzed by acid with tetraethylorthosilicate, and using an organic covalent ligand template (methyltriethoxysilane) or a noncovalent template C6 surfactant (triethylhexylammonium bromide). The influence of hydrotreatment on the structure of templated xerogels is examined in terms of surface area, micropore volume, average pore size, and pore size distribution, and compared against a blank xerogel (nontemplated). The role of surface functional groups was evaluated using Si-29 nuclear magnetic resonance. The structural integrity of the xerogel was maintained to a large extent in samples that had a high contribution of Q(4) species (siloxane groups). Xerogel matrix densification occurred when there was a large concentration of Q(3) and Q(2) species (silanol groups), which also were responsible for increased hydrophilicity. The templated xerogels resulted in up to a 25% concentration of methyl functional groups (T-3 and T-2 species), leading to hydrophobic xerogels. The best results in terms of structural integrity and hydrophobicity were obtained with templated xerogels prepared with the C6 surfactant. The results in this study suggest that surfactant-enhanced condensation reactions lead to structures with a high contribution of Q(4) groups, which are not susceptible to water attack, but are strong enough to oppose matrix densification during rehydration.
Resumo:
This study investigates binder distribution in wet granulation and focuses on the nucleation zone, which is the area where the liquid binder and powder surface come into contact and form the initial nuclei. An equipment independent parameter, dimensionless spray flux Psi (a), is defined to characterise the most important process parameters in the nucleation process: solution flowrate, powder flux, and binder drop size. Ex-granulator experiments are used to study the relationship between dimensionless spray flux, process variables and the coverage of binder fluid on the powder surface. Lactose monohydrate powder on a variable speed riffler passed under a flat spray once only. Water and 7% HPC solution at two spray pressures were used as binders. Experiments with red dye and image analysis demonstrate that changes in dimensionless spray flux correlate with a measurable difference in powder surface coverage. Nucleation experiments show that spray flux controls the size and shape of the nuclei size distribution. At low Psi (a), the system operates in the drop controlled regime, where one drop forms one nucleus and the nuclei size distribution is narrow. At higher Psi (a), the powder surface cakes creating a broader size distribution. For controlled nucleation with the narrowest possible size distribution, it is recommended that the dimensionless spray flux be less than 0.1 to be in the drop-controlled regime. (C) 2001 Elsevier Science S.A. All rights reserved.
Resumo:
An attempt was made to quantify the boundaries and validate the granule growth regime map for liquid-bound granules recently proposed by Iveson and Litster (AlChE J. 44 (1998) 1510). This regime map postulates that the type of granule growth behaviour is a function of only two dimensionless groups: the amount of granule deformation during collision (characterised by a Stokes deformation number, St(def)) and the maximum granule pore saturation, s(max). The results of experiments performed with a range of materials (glass ballotini, iron ore fines, copper chalcopyrite powder and a sodium sulphate and cellulose mixture) using both drum and high shear mixer granulators were examined. The drum granulation results gave good agreement with the proposed regime map. The boundary between crumb and steady growth occurs at St(def) of order 0.1 and the boundary between steady and induction growth occurs at St(def) of order 0.001. The nucleation only boundary occurs at pore saturations that increase from 70% to 80% with decreasing St(def). However, the high shear mixer results all had St(def) numbers which were too large. This is most likely to be because the chopper tip-speed is an over-estimate of the average impact velocity granules experience and possibly also due to the dynamic yield strength of the materials being significantly greater than the yield strengths measured at low strain rates. Hence, the map is only a useful tool for comparing the granulation behaviour of different materials in the same device. Until we have a better understanding of the flow patterns and impact velocities in granulators, it cannot be used to compare different types of equipment. Theoretical considerations also revealed that several of the regime boundaries are also functions of additional parameters not explicitly contained on the map, such as binder viscosity. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The principle that alloys are designed to accommodate the manufacture of goods made from them as much as the properties required of them in service has not been widely applied to pressed and sintered P/M aluminium alloys. Most commercial alloys made from mixed elemental blends are identical to standard wrought alloys. Alternatively, alloys can be designed systematically using the phase diagram characteristics of ideal liquid phase sintering systems. This requires consideration of the solubilities of the alloying elements in aluminium, the melting points of the elements, the eutectics they form with aluminium and the nature of the liquid phase. The relative diffusivities are also important. Here we show that Al-Sn, which closely follows these ideal characteristics, has a much stronger sintering response than either Al-Cu or Al-Zn, both of which have at least one non-ideal characteristic. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Laboratory bioassay studies were conducted in southeast Queensland, Australia,: on the efficacy of Teknar (R), VectoBac (R) 12AS, and Cybate (R) (active ingredient: 1,200 international toxic units Bacillus thuringiensis var, israelensis [Bti]) against 3rd instars of the arbovirus vectors Aedes aegypti. Ae. notoscriptus, Ae. vigilax, and Ae. camptorhynchus. Probit analyses were then used to determine LD,, (median lethal dose), LD95, and lethal dose ratios (LDR). Aedes aegypti and Ae. notoscriptus, both container-habitat species, tolerated the highest Bti concentrations compared with saltmarsh Ae. vigilax and Ae. camptorhynchus. For example, the LDR for Ae. vigilax versus Ae. notoscriptus exposed to Cybate was 0.14 (95% confidence limit [CL] 0.03-0.61). Similarly, the Cybate LDR for Ae. camptorhynchus versus Ae. notoscriptus was 0.22 (95% CL 0.07-0.70). Teknar produced similar results with an LDR of 0.21 (95% CL 0.04-1.10) for Aedes vigilax versus Aedes notoscriptus. Differences in product efficacy were found when tested against the 2 container-breeding species. Cybate was less effective than Teknar with LDRs of 1.55 (95% CL 0.65-3.67) and 1.87 (95% CL 0.68-5.15) for Aedes aegypti and Ae. notoscriptus, respectively. The significant differences in susceptibility between mosquito species and varying efficacy between products highlight the importance of evaluating concentration-response data prior to contracting with distributors of mosquito control products. This information is crucial to resistance management strategies.
Resumo:
Highly filled thermosets are used in applications such as integrated circuit (IC) packaging. However, a detailed understanding of the effects of the fillers on the macroscopic cure properties is limited by the complex cure of such systems. This work systematically quantifies the effects of filler content on the kinetics, gelation and vitrification of a model silica-filled epoxy/amine system in order to begin to understand the role of the filler in IC packaging cure. At high cure temperatures (100 degreesC and above) there appears to be no effect of fillers on cure kinetics and gelation and vitrification times. However, a decrease in the gelation and vitrification times and increase the reaction rate is seen with increasing filler content at low cure temperatures (60-90 degreesC). An explanation for these results is given in terms of catalysation of the epoxy amine reaction by hydrogen donor species present on the silica surface and interfacial effects.
Resumo:
1. The relative permeability of the native P2X receptor channel to monovalent and divalent inorganic and organic cations was determined from reversal potential measurements of ATP-evoked currents in parasympathetic neurones dissociated from rat submandibular ganglia using the dialysed whole-cell patch clamp technique. 2. The P2X receptor-channel exhibited weak selectivity among the alkali metals with a selectivity sequence of Na+ > Li+ > Cs+ > Rb+ > K+, and permeability ratios relative to Cs+ (P-X/P-Cs) ranging from 1. 11 to 0.86. 3. The selectivity for the divalent alkaline earth cations was also weak with the sequence Ca2+ > Sr2+ > Ba2+ > Mn2+ > Mg2+. ATP-evoked currents were strongly inhibited when the extracellular divalent cation concentration was increased. 4, The calculated permeability ratios of different ammonium cations are higher than those of the alkali metal cations. The permeability sequence obtained for the saturated organic cations is inversely correlated with the size of the cation. The unsaturated organic cations have a higher permeability than that predicted by molecular size. 5. Acidification to pH 6.2 increased the ATP-induced current amplitude twofold, whereas alkalization to 8.2 and 9.2 markedly reduced current amplitude. Cell dialysis with either anti-P2X(2) and/or anti-P2X(4) but not anti-P2X(1) antibodies attenuated the ATP-evoked current amplitude. Taken together, these data are consistent with homomeric and/or heteromeric P2X(2) and P2X(4) receptor subtypes expressed in rat submandibular neurones. 6. The permeability ratios for the series of monovalent organic cations, with the exception of unsaturated cations, were approximately related to the ionic size. The relative permeabilities of the monovalent inoganic and organic cations tested are similar to those reported previously for cloned rat P2X2 receptors expressed in mammalian cells.
Resumo:
An experimental study has been carried out for the gas-liquid two-phase flow in a packed bed simulating conditions of the gas and liquid flows in the lower part of blast furnace. The localised liquid flow phenomenon in presence of gas cross flow, which usually occurs around the cohesive zone and raceway in blast furnace, was investigated in detail. Such liquid flow is characterised in terms of liquid shift distance or liquid shift angle that can effectively be measured by the experiments involved in the current study. It is found that liquid shift angle does not significantly increase or decrease with different packing depth. This finding supports the hypothesis of the force balance model where a vectorial relationship among acting forces, i.e. gas drag force, gravitational force and solid-liquid friction force, and liquid shift angle does exist. Liquid shift angle is inversely proportional to particle size and liquid density, and proportional to square of gas superficial velocity, but is almost independent on liquid flowrate and liquid viscosity. The gas-liquid drag coefficient, an important aspect for quantifying the interaction between gas and liquid flows, was conceptually modified based on the discrete feature of liquid flow through a packed bed and evaluated by the combined theoretical and experimental investigation. Experimental measurements suggest that the gas-liquid drag coefficient is approximately a constant (C-DG(')=5.4+/-1.0) and is independent on liquid properties, gas velocity and packing structure. The result shows a good agreement with previous experimental data and prediction of the existing liquid flow model.