77 resultados para Inflammatory cytokine
Resumo:
IL-1 is a key proinflammatory driver of several autoimmune diseases including juvenile inflammatory arthritis, diseases with mutations in the NALP/cryopyrin complex and Crohn’s disease, and is genetically or clinically associated with many others. IL-1 is a pleiotropic proinflammatory cytokine; however the mechanisms by which increased IL-1 signaling promotes autoreactive T cell activity are not clear. Here we show that autoimmune-prone NOD and IL-1 receptor antagonist-deficient C57BL/6 mice both produce high levels of IL-1, which drives autoreactive effector cell expansion. IL-1beta drives proliferation and cytokine production by CD4+CD25+FoxP3– effector/memory T cells, attenuates CD4+CD25+FoxP3+ regulatory T cell function, and allows escape of CD4+CD25– autoreactive effectors from suppression. Thus, inflammation or constitutive overexpression of IL-1beta in a genetically predisposed host can promote autoreactive effector T cell expansion and function, which attenuates the ability of regulatory T cells to maintain tolerance to self.
Resumo:
TNF-alpha neutralising agents such as Infliximab (Remicade(R)), Etanercept (Enbrel(R)) and the IL-1 receptor antagonist Anakinra (Kineret(R)), are currently used clinically for the treatment of many inflammatory diseases such as Crohn's disease, rheumatoid arthritis, ankylosing spondylitis, juvenile rheumatoid arthritis, psoriatic arthritis and psoriasis. These protein preparations are expensive to manufacture and administer, need to be injected and can cause allergic reactions. An alternative approach to lowering the levels of TNF-alpha and IL-1 beta in inflammatory disease, is to inhibit the enzymes that generate these cytokines using cheaper small molecules. This paper is a broad overview of the progress that has been achieved so far, with respect to small molecule inhibitor design and pharmacological studies (in animals and humans), for the metalloprotease Tumour Necrosis Factor-alpha Converting Enzyme (TACE) and the cysteine protease Caspase-1 (Interieukin-1 beta Converting Enzyme, ICE). Inhibitors of these two enzymes are currently considered to be good therapeutic targets that have the potential to provide relatively inexpensive and orally bioavailable anti-inflammatory agents in the future.
Resumo:
Diverse infectious and inflammatory environmental triggers, through unknown mechanisms, initiate autoimmune disease in genetically predisposed individuals. Here we show that IL-1b, a key cytokine mediator of the inflammatory response, suppresses CD25+CD4+ regulatory T cell function. Surprisingly, suppression by IL-1b occurs only where antigen is presented simultaneously to CD25+CD4+ T cells and to CD25CD4+ antigen-specific effector T cells. Further, NOD mice show an intrinsic over-production of IL-1 that contributes to reduced CD25+CD4+ regulatory T cell function. Thus, inflammation or constitutive over-expression of IL-1b in a genetically predisposed host can initiate a positive feedback loop licensing autoantigen-specific effector cells to inhibit the regulatory T cells maintaining tolerance to self.
Resumo:
IL-1 is a key proinflammatory driver of several autoimmune diseases including juvenile inflammatory arthritis, diseases with mutations in the NALP/cryopyrin complex and Crohn's disease, and is genetically or clinically associated with many others. IL-1 is a pleiotropic proinflammatory cytokine; however the mechanisms by which increased IL-1 signaling promotes autoreactive T cell activity are not clear. Here we show that autoimmune-prone NOD and IL-1 receptor antagonist-deficient C57BL/6 mice both produce high levels of IL-1, which drives autoreactive effector cell expansion. IL-1 beta drives proliferation and cytokine production by CD4(+)CD25(+)FoxP3(-) effector/memory T cells, attenuates CD4(+)CD25(+)FoxP3(+) regulatory T cell function, and allows escape of CD4(+)CD25(-) autoreactive effectors from suppression. Thus, inflammation or constitutive overexpression of IL-1 beta in a genetically predisposed host can promote autoreactive effector T cell expansion and function, which attenuates the ability of regulatory T cells to maintain tolerance to self.
Resumo:
Cytokines are secreted proteins that regulate important cellular responses such as proliferation and differentiation(1). Key events in cytokine signal transduction are well defined: cytokines induce receptor aggregation, leading to activation of members of the JAK family of cytoplasmic tyrosine kinases. In turn, members af the STAT family of transcription factors are phosphorylated, dimerize and increase the transcription of genes with STAT recognition sites in their promoters(1-4). Less is known of how cytokine signal transduction is switched off. We have cloned a complementary DNA encoding a protein SOCS-1, containing an SH2-domain, by its ability to inhibit the macrophage differentiation of M1 cells in response to interleukin-6. Expression of SOCS-1 inhibited both interleukin-6-induced receptor phosphorylation and STAT activation. We have also cloned two-relatives of SOCS-1, named SOCS-2 and SOCS-3, which together with the previously described CIS (ref. 5) form a new family of proteins. Transcription of all four SOCS genes is increased rapidly in response to interleukin-6, in vitro and in vivo, suggesting they may act in a classic negative feedback loop to regulate cytokine signal transduction.
Resumo:
Numerous studies have attempted to elucidate the cytokine networks involved in chronic periodontitis, often with conflicting results. A variety of techniques were used to study cells in situ, cells extracted from gingival tissues, peripheral blood mononuclear cells, purified cell populations, and T cell lines and clones. Bacterial components, including sonicates, killed cells, outer membrane components, and purified antigens, have all been used to stimulate cells in vitro, making comparisons of cytokine profiles difficult. As it is likely that different cells are present at different disease stages, the inability to determine disease activity clinically is a major limitation of all these studies. In the context of tissue destruction, cytokines such as IL-1, IL-6 and IL-18 are likely to be important, as are their regulating cytokines IL-10 and IL-11. In terms of the nature of the inflammatory infiltrate, two apparently conflicting hypotheses have emerged: one based on direct observations of human lesions, the other based on animal experimentation and the inability to demonstrate IL-4 mRNA in gingival extracts. In the first of these, Th1 responses are responsible for the stable lesion, while in the second Th2 responses are considered protective. Using Porphyromonas gingivalis specific T cell lines we have shown a tendency for IFN-gamma production rather than LL-I or IL-10 when antigen is presented with peripheral blood mononuclear cells which may contain dendritic cells. It is likely that the nature of the antigen-presenting cell is fundamental in determining the nature of the cytokine profile, which may in turn open up possibilities for new therapeutic modalities.
Resumo:
We describe the genomic organization of a recently identified CC chemokine, MIP3 alpha /CCL20 (HGMW-approved symbol SCYA20). The MIP-3 alpha /CCL20 gene was cloned and sequenced, revealing a four exon, three intron structure, and was localized by FISK analysis to 2q35-q36. Two distinct cDNAs were identified, encoding two forms of MIP-3 alpha /CCL20, Ala MLP-3 alpha /CCL20 and Ser MIP-3 alpha /CCL20, that differ by one amino acid at the predicted signal peptide cleavage site. Examination of the sequence around the boundary of intron 1 and exon 2 showed that use of alternative splice acceptor sites could give rise to Ata MIP-3 alpha /CCL20 or Ser MIP-3 alpha /CCL20. Both forms of MIP-3cr/CCL20 were chemically synthesized and tested for biological activity. Both flu antigen plus IL-a-activated CD4(+) and CD8(+) T lymphoblasts and cord blood-derived dendritic cells responded to Ser and Ala MIP-3 alpha /CCL20. T lymphocytes exposed only to IL-2 responded inconsistently, while no response was detected in naive T lymphocytes, monocytes, or neutrophils. The biological activity of Ser MIP-3 alpha /CCL20 and Ala MIP-3 alpha /CCL20 and the tissue-specific preference of different splice acceptor sites are not yet known. (C) 2001 Academic Press.
Resumo:
A 47 year old man undergoing immunotherapy for metastatic melanoma with autologous dendritic cells pulsed with autologous tumour peptide and hepatitis a surface antigen developed acute left ankle arthritis. Gout and acute infection were excluded, and an autoimmune aetiology or occult metastasis were considered. The arthritis initially subsided with indomethacin, but the symptoms recurred 2 months later, and magnetic resonance imaging demonstrated metastatic melanoma of the left talus. Immunohistochemical staining of a cerebral metastatic deposit biopsied 1 week after the onset of arthritis demonstrated T-cell and macrophage infiltration of the tumour. In addition, the patient developed melanoma-specific delayed type hypersensitivity and cytotoxic T-cell responses after vaccination. Thus, the monoarthritis represented an 'appropriate' inflammatory response directed against metastatic melanoma. (C) 2001 Lippincott Williams & Wilkins.
Resumo:
The nonsteroidal anti-inflammatory drug zomepirac (ZP) is metabolised to a chemically reactive acyl glucuronide conjugate (ZAG) which can form covalent adducts with proteins. In vivo, such adducts could initiate immune or toxic responses. In rats given ZP, the major band detected in liver homogenates by immunoblotting with a polyclonal ZP antiserum was at 110 kDa. This adduct was identified as ZP-modified dipeptidyl peptidase IV (DPP IV) by immunoblotting using the polyclonal ZP antiserum and monoclonal DPP IV antibodies OX-61 and 236.3. In vitro, ZAG, but not ZP itself, covalently modified recombinant human and rat DPP IV. Both monoclonal antibodies recognized DPP IV in livers from ZP- and vehicle-dosed rats. Confirmation that the 110 kDa bands which were immunoreactive with the ZP and DPP IV antibodies represented the same molecule was obtained from a rat liver extract reciprocally immunodepleted of antigens reactive with these two antibodies. Furthermore, immunoprecipitations with OX-61 antibody followed by immunolotting with ZP antiserum, and the reciprocal experiment, showed that both these antibodies recognised the same 110 kDa molecule in extracts of ZP-dosed rat liver. The results verify that DPP IV is one of the protein targets for covalent modification during hepatic transport and biliary excretion of ZAG in rats. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
OBJECTIVE: Dendritic cells (DC) are the only antigen-presenting cells that can activate naive T lymphocytes and initiate a primary immune response. They are also thought to have a role in immune tolerance. DC traffic from the blood to peripheral tissue where they become activated. They then present antigen and the costimulating signals necessary to initiate an immune response. In this study, we investigated the number, subsets, and activation pattern of circulating and intestinal DC from patients with clinically mild ulcerative colitis (UC) or Crohn's disease. METHODS: Patients were recruited, if they were not taking immunosuppressive therapy, and were assessed for clinical severity of their disease using for UC, the Clinical Activity Index, and for Crohn's disease, the Crohn's Disease Activity Index. Blood CD11c(+) and CD11c(-) DC subsets, expression of costimulatory antigens, CD86 and CD40, and the early differentiation/activation antigen, CMRF44, were enumerated by multicolor flow cytometry of lineage negative (lin(-) = CD3(-), CD19(-), CD14(-), CD16(-)) HLA-DR+ DC. These data were compared with age-matched healthy and the disease control groups of chronic noninflammatory GI diseases (cGI), acute noninflammatory GI diseases (aGI), and chronic non-GI inflammation (non-GI). In addition, cryostat sections of colonoscopic biopsies from healthy control patients and inflamed versus noninflamed gut mucosa of inflammatory bowel disease (IBD) patients were examined for CD86(+) and CD40(+)lin(-) cells. RESULTS: Twenty-one Crohn's disease and 25 UC patients, with mean Crohn's Disease Activity Index of 98 and Clinical Activity Index of 3.1, and 56 healthy controls, five cGI, five aGI, and six non-GI were studied. CD11c(+) and CD11c(-) DC subsets did not differ significantly between Crohn's, UC, and healthy control groups. Expression of CD86 and CD40 on freshly isolated blood DC from Crohn's patients appeared higher (16.6%, 31%) and was significantly higher in UC (26.6%, 46.3%) versus healthy controls (5.5%, 25%) (p = 0.004, p = 0.012) and non-GI controls (10.2%, 22.8%) (p = 0.012, p = 0.008), but not versus cGI or aGI controls. CD86(+) and CD40(+) DC were also present in inflamed colonic and ileal mucosa from UC and Crohn's patients but not in noninflamed IBD mucosa or normal mucosa. Expression of the CMRF44 antigen was low on freshly isolated DC, but it was upregulated after 24-h culture on DC from all groups, although significantly less so on DC from UC versus Crohn's or healthy controls (p = 0.024). The CMRF44(+) antigen was mainly associated with CD11c(+) DC, and in UC was inversely related to the Clinical Activity Index (r = -0.69, p = 0.0002). CONCLUSIONS: There is upregulation of costimulatory molecules on blood DC even in very mild IBD but surprisingly, there is divergent expression of the differentiation/activation CMRF44 antigen. Upregulation of costimulatory molecules and divergent expression of CMRF44 in blood DC was also apparent in cGI and aGI but not in non-GI or healthy controls, whereas intestinal CD86(+) and CD40(+) DC were found only in inflamed mucosa from IBD patients. Persistent or distorted activation of blood DC or divergent regulation of costimulatory and activation antigens may have important implications for gut mucosal immunity and inflammation. (Am J Gastroenterol 2001;96:2946-2956. (C) 2001 by Am. Coll. of Gastroenterology).
Resumo:
1. Recent findings have suggested a significant involvement of the immune system in the control of pain. Immune cells contain opioid peptides that are released within inflamed tissue and act at opioid receptors on peripheral sensory nerve endings. It is also apparent that different types of lymphocytes contain P-endorphin, memory T cells containing more beta -endorphin than naive cells. 2. These findings highlight an integral link between immune cell migration and inflammatory pain, The present review highlights immune system involvement in the site-directed control of inflammatory pain. 3. Full-length mRNA transcripts for opioid precursor proteins are expressed in immune cells. Increased expression of pro-opiomelanocortin mRNA and beta -endorphin has been demonstrated in stimulated lymphocytes and lymphocytes from animals with inflammation. 4. Cytokines and corticotropin-releasing factor (CRF) release opioids from immune cells, Potent peripheral analgesia due to direct injection of CRF can be blocked by antagonists to CRF, antibodies to opioid peptides, antisense to CRF and opioid receptor-specific antagonists. The release of opioid peptides from lymphocytes is calcium dependent and opioid receptor specific. Furthermore, endogenous sources of opioid peptides produce potent analgesia when implanted into the spinal cord. 5. Activated immune cells migrate directly to inflamed tissue using cell adhesion molecules to adhere to the epithelial surface of the vasculature in inflamed tissue. Lymphocytes that have been activated can express opioid peptides, Memory type T cells that contain opioid peptides are present within inflamed tissue; naive cells are not present in inflamed tissue and do not contain opioid peptides, Inhibiting the migration of memory type T cells into inflamed tissue by blocking selectins results in reduced numbers of beta -endorphin containing cells, a reduced quantity of beta -endorphin in inflamed paws and reduced stress- and CRF-induced peripheral analgesia. 6. Immunosuppression is associated with increased pain in patients. Moreover, immunosuppression results in decreased lymphocyte numbers as well as decreased analgesia in animal models.
Resumo:
Background: The immune response to Porphyromonas gingivalis in the mouse abscess model is known to be dependent upon CD4 T-cell activation and the regulatory role of cytokines. The role of interleukin-10 (IL-10) in this mouse model was examined in vivo. Methods: One-week-old, female BALB/c mice were divided into 4 groups. Groups 1 and 2 were given intraperitoneal (ip) injections of phosphate buffered saline (PBS) weekly for 5 weeks. Group 3 was given an ip injection of rat immunoglobulin. Group 4 was injected with rat anti-IL-10 antibodies. At week 6, group 1 was sham-immunized with PBS, and groups 2, 3, and 4 were injected with P gingivalis lipopolysaccharide (Pg-LPS) weekly for 2 weeks. One week after the final immunization, delayed-type hypersensitivity (DTH) was assessed by footpad swelling to Pg-LPS. The level of serum antibodies to Pg-LPS and IFN-gamma (IFN-gamma) was determined by enzyme-linked immunosorbent assay. Dorsal abscess formation induced by the injection of viable P gingivalis was examined daily for 30 days. Results: The footpad swelling of the anti-IL-10-treated group (group 4) was significantly higher than that of groups 1 to 3. Similarly, the serum IFN-gamma level in group 4 was much higher than that of the other experimental groups. There was no significant difference in serum IgG antibodies to Pg-LPS in any of the experimental groups. However, the level of IgM antibodies in group 4 mice was significantly lower than that in groups 2 and 3. In addition, serum IgG1 was suppressed in group 4 mice, while IgG2a antibodies were raised. However, there was no difference observed between the levels of IgG2b and IgG3 antibodies in any group of mice. The lesions in sham-immunized mice (group 1) persisted for 30 days, and those in group 2 and 3 were undetected by day 18 and 20, respectively. In sharp contrast, lesions in group 4 had healed completely by day 13. Conclusions: This study has shown that IL-10 depletion in vivo in P gingivalis LPS-induced immune response in mice led to an elevated DTH response, an increase in serum IFN-gamma levels, and raised levels of IgG and IgG2a antibodies. Treatment with anti-IL-10 antibodies resulted in suppressed IgG I and IgM responses and a more rapid healing of abscesses than in non-IL-10-depleted mice. These results suggest that IL-10 depletion in Pg-LPS-induced immune response in mice may lead to a Th1-like immune response and provide strong protection against a subsequent challenge with live P gingivalis in an abscess model.