89 resultados para Imunoglobulina anti-D
Speculations on the role of vitamin D and calcium-binding proteins in the aetiology of schizophrenia
Resumo:
The interactions between zinc salts and the naturally occurring cyclic octapeptide ascidiacyclamide in methanol, as well as a synthetic analogue cyclo[Ile(Oxn)-D-Val(Thz)](2), were monitored by H-1 NMR and CD spectroscopy. Three zinc complexes were identified, their relative amounts depending on the nature of the anion (perchlorate, triflate or chloride) and the presence or absence of base. Binding constants for two of the zinc species were calculated from CD or H-1 NMR spectra, [Zn(L - H)](+) (KZn(L-H) = [Zn(L - H)(+)]/[Zn2+][(L - H)(-)] = 10(7 +/- 2) M-1; 95% methanol/5% water, 298.0 K, NEt3/HClO4 buffer 0.04 M) and [ZnLCl](+) (K-ZnCIL = [ZnCIL+]/[Zn2+][Cl-][L] = 10(7.2) (+/-) (0.1) M-2; d(3)-methanol, 301 K).
Resumo:
Three defensin-like peptides (DLPs) were isolated from platypus venom and sequenced. One of these peptides, DLP-1, was synthesized chemically and its three-dimensional structure was determined using NMR spectroscopy. The main structural elements of this 42-residue peptide were an anti-parallel beta-sheet comprising residues 15-18 and 37-40 and a small 3(10) helix spanning residues 10-12. The overall three-dimensional fold is similar to that of beta-defensin-12, and similar to the sodium-channel neurotoxin ShI (Stichodactyla helianthus neurotoxin I). However, the side chains known to be functionally important in beta-defensin-12 and ShI are not conserved in DLP-1, suggesting that it has a different biological function. Consistent with this contention, we showed that DLP-1 possesses no anti-microbial properties and has no observable activity on rat dorsal-root-ganglion sodium-channel currents.
Resumo:
At a time of the emergence of drug-resistant bacterial strains, the development of antimicrobial compounds with novel mechanisms of action is of considerable interest. Perhaps the most promising among these is a family of antibacterial peptides originally isolated from insects. These were shown to act in a stereospecific manner on an as-yet unidentified target bacterial protein. One of these peptides, drosocin, is inactive in vivo due to the rapid decomposition in mammalian sera. However, another family member, pyrrhocoricin, is significantly more stable, has increased in vitro efficacy against Gram-negative bacterial strains, and if administered alone, as we show here, is devoid of in vitro or in vivo toxicity. At low doses, pyrrhocoricin protected mice against Escherichia call infection, but at a higher dose augmented the infection of compromised animals. Analogs of pyrrhocoricin were, therefore, synthesized to further improve protease resistance and reduce toxicity. A linear derivative containing unnatural amino acids at both termini showed high potency and lack of toxicity in vivo and an expanded cyclic analog displayed broad activity spectrum in vitro. The bioactive conformation of native pyrrhocoricin was determined by nuclear magnetic resonance spectroscopy, and similar to drosocin, reverse turns were identified as pharmacologically important elements at the termini, bridged by an extended peptide domain. Knowledge of the primary and secondary structural requirements for in vivo activity of these peptides allows the design of novel antibacterial drug leads.
Resumo:
C5a is implicated as a pathogenic factor in a wide range of immunoinflammatory diseases, including sepsis and immune complex disease, Agents that antagonize the effects of C5a could be useful in these diseases. We have developed some novel C5a antagonists and have determined the acute anti-inflammatory properties of a new small molecule C5a receptor antagonist against C5a- and LPS-induced neutrophil adhesion and cytokine expression, as well as against some hallmarks of the reverse Arthus reaction in rats. We found that a single i.v. dose (1 mg/kg) of this antagonist inhibited both C5a- and LPS-induced neutropenia and elevated levels of circulating TNF-alpha, as well as polymorphonuclear leukocyte migration, increased TNF-alpha levels and vascular leakage at the site of immune complex deposition. These results indicate potent anti-inflammatory activities of a new C5a receptor antagonist and provide more evidence for a key early role for C5a in sepsis and the reverse Arthus reaction. The results support a role for antagonists of C5a receptors in the therapeutic intervention of immunoinflammatory disease states such as sepsis and immune complex disease.
Resumo:
1. Classical L-type voltage-operated calcium channel (VOCC) antagonists dilate blood vessels, depress myocardial contractility and slow cardiac conduction. 2. We compared four L-type VOCC antagonists and a novel tetralol derivative, mibefradil, reportedly 10-fold more selective for T- (transient) over L-type VOCC in two in vitro assays of human tissue, namely isolated small arteries from the aortic vasa vasorum in a myograph and right atrial trabeculae muscle under isometric force conditions. 3. In arteries contracted with K+ (62 mmol/L), the relaxation pIC(50) values for the VOCC antagonists felodipine, nifedipine, amlodipine, verapamil and mibefradil were 8.30, 7.78, 6.64, 6.26 and 6.22, respectively. In atrial trabeculae, the pIC(50) values to inhibit the inotropic response to a submaximal concentration of isoprenaline (6 nmol/L) for felodipine, nifedipine, verapamil, amlodipine and mibefradil were 7.21, 6.95, 6.91, 5.94 and 4.61, respectively. 4. Taking the anti-log (pIC(50) vessel - pIC(50) atrium) the vascular relaxation to cardiac depression potency ratios for mibefradil, felodipine, nifedipine, amlodipine and verapamil were 41, 12, 7, 5 and 0.22, respectively. 5. We conclude that, in human tissue assays, perhaps T- over L-type VOCC selectivity confers the most favourable vascular selectivity on mibefradil. Alternatively, splice variants of L-type VOCC in the vasculature (CaV1.2b) may be more sensitive to mibefradil than the splice variants in the heart (CaV1.2a).
Resumo:
It is now well recognized that cervical cancer is caused by infection with certain human papillomavirus (HPV) subtypes and while interferon-alpha (IFN-alpha) is used to treat HPV-infected lesions, HPV appears to have developed a means to avoid the effects of IFN-alpha. Clinically, resistance appears to be associated with the expression of the E7 oncoprotein. Here we investigated the effects of expression in cells of the E7 protein from high- and low-risk papillomavirus subtypes on a range of responses to IFN-alpha. 2fTGH, a cell line dependent on IFN-alpha for growth in selection medium, grew significantly less well in the presence of E7, and the antiproliferative effects of IFN-alpha upon epithelial cells was lost upon E7 expression. The antiviral effects of IFN-alpha were abrogated in E7-expressing cells. Loss of response to IFN-alpha was found to occur in both high- and low-risk papillomaviruses. Finally, deletion of amino acids 21-24 of HPV type 16 E7 protein partially reversed repression. We conclude that E7 inhibits the functional effects of IFN-alpha and that this property is shared by all HPV subtypes tested. (C) 2000 Academic Press.
Resumo:
IL-12 has been demonstrated to have potent anti-tumor activities in a variety of mouse tumor models, but the relative roles of NK, NKT, and T cells and their effector mechanisms in these responses have not been fully addressed. Using a spectrum of gene-targeted or Ab-treated mice we have shown that for any particular tumor model the effector mechanisms downstream of IL-12 often mimic the natural immune response to that tumor. For example, metastasis of the MHC class I-deficient lymphoma, EL4-S3, was strictly controlled by NK cells using perforin either naturally or following therapy with high-dose IL-12. Intriguingly, in B16F10 and RM-1 tumor models both NK and NKT cells contribute to natural protection from tumor metastasis, In these models, a lower dose of IL-12 or delayed administration of IL-12 dictated a greater relative role of NKT cells in immune protection from tumor metastasis. Overall, both NK and NKT cells can contribute to natural and IL-12-induced immunity against tumors, and the relative role of each population is turner and therapy dependent.