88 resultados para Iconics representations
Resumo:
A Latin square is pan-Hamiltonian if the permutation which defines row i relative to row j consists of a single cycle for every i j. A Latin square is atomic if all of its conjugates are pan-Hamiltonian. We give a complete enumeration of atomic squares for order 11, the smallest order for which there are examples distinct from the cyclic group. We find that there are seven main classes, including the three that were previously known. A perfect 1-factorization of a graph is a decomposition of that graph into matchings such that the union of any two matchings is a Hamiltonian cycle. Each pan-Hamiltonian Latin square of order n describes a perfect 1-factorization of Kn,n, and vice versa. Perfect 1-factorizations of Kn,n can be constructed from a perfect 1-factorization of Kn+1. Six of the seven main classes of atomic squares of order 11 can be obtained in this way. For each atomic square of order 11, we find the largest set of Mutually Orthogonal Latin Squares (MOLS) involving that square. We discuss algorithms for counting orthogonal mates, and discover the number of orthogonal mates possessed by the cyclic squares of orders up to 11 and by Parker's famous turn-square. We find that the number of atomic orthogonal mates possessed by a Latin square is not a main class invariant. We also define a new sort of Latin square, called a pairing square, which is mapped to its transpose by an involution acting on the symbols. We show that pairing squares are often orthogonal mates for symmetric Latin squares. Finally, we discover connections between our atomic squares and Franklin's diagonally cyclic self-orthogonal squares, and we correct a theorem of Longyear which uses tactical representations to identify self-orthogonal Latin squares in the same main class as a given Latin square.
Resumo:
The coordination of movement is governed by a coalition of constraints. The expression of these constraints ranges from the concrete—the restricted range of motion offered by the mechanical configuration of our muscles and joints; to the abstract—the difficulty that we experience in combining simple movements into complex rhythms. We seek to illustrate that the various constraints on coordination are complementary and inclusive, and the means by which their expression and interaction are mediated systematically by the integrative action of the central nervous system (CNS). Beyond identifying the general principles at the behavioural level that govern the mutual interplay of constraints, we attempt to demonstrate that these principles have as their foundation specific functional properties of the cortical motor systems. We propose that regions of the brain upstream of the motor cortex may play a significant role in mediating interactions between the functional representations of muscles engaged in sensorimotor coordination tasks. We also argue that activity in these ldquosupramotorrdquo regions may mediate the stabilising role of augmented sensory feedback.
Resumo:
We analyze the quantum dynamics of radiation propagating in a single-mode optical fiber with dispersion, nonlinearity, and Raman coupling to thermal phonons. We start from a fundamental Hamiltonian that includes the principal known nonlinear effects and quantum-noise sources, including linear gain and loss. Both Markovian and frequency-dependent, non-Markovian reservoirs are treated. This treatment allows quantum Langevin equations, which have a classical form except for additional quantum-noise terms, to be calculated. In practical calculations, it is more useful to transform to Wigner or 1P quasi-probability operator representations. These transformations result in stochastic equations that can be analyzed by use of perturbation theory or exact numerical techniques. The results have applications to fiber-optics communications, networking, and sensor technology.
Resumo:
The minimal irreducible representations of U-q[gl(m|n)], i.e. those irreducible representations that are also irreducible under U-q[osp(m|n)] are investigated and shown to be affinizable to give irreducible representations of the twisted quantum affine superalgebra U-q[gl(m|n)((2))]. The U-q[osp(m|n)] invariant R-matrices corresponding to the tensor product of any two minimal representations are constructed, thus extending our twisted tensor product graph method to the supersymmetric case. These give new solutions to the spectral-dependent graded Yang-Baxter equation arising from U-q[gl(m|n)((2))], which exhibit novel features not previously seen in the untwisted or non-super cases.
Resumo:
This paper examines the manipulation of forms of the traditional Japanese stroll garden at Site of Reversible Destiny, a tourist park designed by the New Yorkbased collaborators Shusaku Arakawa and Madeline Gins. Landscape and its representations are central to the construction of national identity in Japan since the cultural distinctiveness of the Japanese people has been argued to rest on their unique relationship to nature and the country’s idiosyncratic geography. The stroll garden of the larger estates and palaces of the Edo period (1615–1867) developed out of earlier temple gardens and most public parks in contemporary Japan are in the grounds of these historic sites or reproduce their forms.
Resumo:
We introduce the study of dynamical quantum noise in Bose-Einstein condensates through numerical simulation of stochastic partial differential equations obtained using phase-space representations. We derive evolution equations for a single trapped condensate in both the positive-P and Wigner representations and perform simulations to compare the predictions of the two methods. The positive-P approach is found to be highly susceptible to the stability problems that have been observed in other strongly nonlinear, weakly damped systems. Using the Wigner representation, we examine the evolution of several quantities of interest using from a variety of choices of initial stare for the condensate and compare results to those for single-mode models. [S1050-2947(98)06612-8].
Resumo:
Two basic representations of principal-agent relationships, the 'state-space' and 'parameterized distribution' formulations, have emerged. Although the state-space formulation appears more natural, analytical studies using this formulation have had limited success. This paper develops a state-space formulation of the moral-hazard problem using a general representation of production under uncertainty. A closed-form solution for the agency-cost problem is derived. Comparative-static results are deduced. Next we solve the principal's problem of selecting the optimal output given the agency-cost function. The analysis is applied to the problem of point-source pollution control. (C) 1998 Published by Elsevier Science S.A. All rights reserved.
Resumo:
A t - J model for correlated electrons with impurities is proposed. The impurities are introduced in such a way that integrability of the model in one dimension is not violated. The algebraic Bethe ansatz solution of the model is also given and it is shown that the Bethe states are highest weight states with respect to the supersymmetry algebra gl(2/1).
Resumo:
A full set of Casimir operators for the Lie superalgebra gl(m/infinity) is constructed and shown to be well defined in the category O-FS generated by the highest-weight irreducible representations with only a finite number of non-zero weight components. The eigenvalues of these Casimir operators are determined explicitly in terms of the highest weight. Characteristic identities satisfied by certain (infinite) matrices with entries from gl(m/infinity) are also determined.
Resumo:
The graded-fermion algebra and quasispin formalism are introduced and applied to obtain the gl(m\n)down arrow osp(m\n) branching rules for the two- column tensor irreducible representations of gl(m\n), for the case m less than or equal to n(n > 2). In the case m < n, all such irreducible representations of gl(m\n) are shown to be completely reducible as representations of osp(m\n). This is also shown to be true for the case m=n, except for the spin-singlet representations, which contain an indecomposable representation of osp(m\n) with composition length 3. These branching rules are given in fully explicit form. (C) 1999 American Institute of Physics. [S0022-2488(99)04410-2].
Resumo:
Bosonized q-vertex operators related to the four-dimensional evaluation modules of the quantum affine superalgebra U-q[sl((2) over cap\1)] are constructed for arbitrary level k=alpha, where alpha not equal 0,-1 is a complex parameter appearing in the four-dimensional evaluation representations. They are intertwiners among the level-alpha highest weight Fock-Wakimoto modules. Screen currents which commute with the action of U-q[sl((2) over cap/1)] up to total differences are presented. Integral formulas for N-point functions of type I and type II q-vertex operators are proposed. (C) 2000 American Institute of Physics. [S0022-2488(00)00608-3].
Resumo:
We study the level-one irreducible highest weight representations of the quantum affine superalgebra U-q[sl((N) over cap\1)], and calculate their characters and supercharacters. We obtain bosonized q-vertex operators acting on the irreducible U-q[sl((N) over cap\1)] modules and derive the exchange relations satisfied by the vertex operators. We give the bosonization of the multicomponent super t-J model by using the bosonized vertex operators. (C) 2000 American Institute of Physics. [S0022- 2488(00)00508-9].
Resumo:
Recent research has begun to provide support for the assumptions that memories are stored as a composite and are accessed in parallel (Tehan & Humphreys, 1998). New predictions derived from these assumptions and from the Chappell and Humphreys (1994) implementation of these assumptions were tested. In three experiments, subjects studied relatively short lists of words. Some of the Lists contained two similar targets (thief and theft) or two dissimilar targets (thief and steal) associated with the same cue (ROBBERY). AS predicted, target similarity affected performance in cued recall but not free association. Contrary to predictions, two spaced presentations of a target did not improve performance in free association. Two additional experiments confirmed and extended this finding. Several alternative explanations for the target similarity effect, which incorporate assumptions about separate representations and sequential search, are rejected. The importance of the finding that, in at least one implicit memory paradigm, repetition does not improve performance is also discussed.
Resumo:
A multiparametric extension of the anisotropic U model is discussed which maintains integrability. The R-matrix solving the Yang-Baxter equation is obtained through a twisting construction applied to the underlying U-q(sl (2/1)) superalgebraic structure which introduces the additional free parameters that arise in the model. Three forms of Bethe ansatz solution for the transfer matrix eigenvalues are given which we show to be equivalent.
Resumo:
The integral of the Wigner function of a quantum-mechanical system over a region or its boundary in the classical phase plane, is called a quasiprobability integral. Unlike a true probability integral, its value may lie outside the interval [0, 1]. It is characterized by a corresponding selfadjoint operator, to be called a region or contour operator as appropriate, which is determined by the characteristic function of that region or contour. The spectral problem is studied for commuting families of region and contour operators associated with concentric discs and circles of given radius a. Their respective eigenvalues are determined as functions of a, in terms of the Gauss-Laguerre polynomials. These polynomials provide a basis of vectors in a Hilbert space carrying the positive discrete series representation of the algebra su(1, 1) approximate to so(2, 1). The explicit relation between the spectra of operators associated with discs and circles with proportional radii, is given in terms of the discrete variable Meixner polynomials.