154 resultados para IMMUNE-COMPLEX GLOMERULONEPHRITIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sm and Sm-like proteins are key components of small ribonucleoproteins involved in many RNA and DNA processing pathways. In eukaryotes, these complexes contain seven unique Sm or Sm-like (Lsm) proteins assembled as hetero-heptameric rings, whereas in Archaea and bacteria six or seven-membered rings are made from only a single polypeptide chain. Here we show that single Sm and Lsm proteins from yeast also have the capacity to assemble into homo-oligomeric rings. Formation of homo-oligomers by the spliceosomal small nuclear ribonucleoprotein components SmE and SmF preclude hetero-interactions vital to formation of functional small nuclear RNP complexes in vivo. To better understand these unusual complexes, we have determined the crystal structure of the homomeric assembly of the spliceosomal protein SmF. Like its archaeal/bacterial homologs, the SmF complex forms a homomeric ring but in an entirely novel arrangement whereby two heptameric rings form a co-axially stacked dimer via interactions mediated by the variable loops of the individual SmF protein chains. Furthermore, we demonstrate that the homomeric assemblies of yeast Sm and Lsm proteins are capable of binding not only to oligo(U) RNA but, in the case of SmF, also to oligo(dT) single-stranded DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A converging body of literature over the last 50 years has implicated the amygdala in assigning emotional significance or value to sensory information. In particular, the amygdala has been shown to be an essential component of the circuitry underlying fear-related responses. Disorders in the processing of fear-related information are likely to be the underlying cause of some anxiety disorders in humans such as posttraumatic stress. The amygdaloid complex is a group of more than 10 nuclei that are located in the midtemporal lobe. These nuclei can be distinguished both on cytoarchitectonic and connectional grounds. Anatomical tract tracing studies have shown that these nuclei have extensive intranuclear and internuclear connections. The afferent and efferent connections of the amygdala have also been mapped in detail, showing that the amygdaloid complex has extensive connections with cortical and subcortical regions. Analysis of fear conditioning in rats has suggested that long-term synaptic plasticity of inputs to the amygdala underlies the acquisition and perhaps storage of the fear memory. In agreement with this proposal, synaptic plasticity has been demonstrated at synapses in the amygdala in both in vitro and in vivo studies. In this review, we examine the anatomical and physiological substrates proposed to underlie amygdala function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For many years proof that the hypoxic nature of malignant tumours can be used to selectively target anticancer drugs has been sought. Several classes of potential redox activated anticancer drugs have been developed to take advantage of the reducing environment resulting from the hypoxia. Drug complexes with redox active metal centres as carriers have been investigated, but have largely been employed with cytotoxic drugs that require release of the drug intracellularly, complicating the design of such complexes. MMP inhibitors, a new class of anticancer drug, conversely act in the extracellular environment and we have investigated inhibitor complexes with several redox active transition metals. Marimastat is an MMP inhibitor with potent in-vitro antimetastatic activity and was recently in Phase III clinical trials for a variety of cancer types. We have synthesised a Co(II1) complex of marimastat incorporating the tetradentate ligand tpa (tris(2-methylpyridyl)amine) as a carrier ligand. The complex was structurally characterised in the solid state by single crystal X-ray diffraction, the first example of a crystal structure containing marimastat. 2D COSY and NOESY NMR spectra showed that the complex exists in two isomeric forms in solution, corresponding to the cis and trans isomers yet only crystallises in one of these forms. Biological testing of the complex in mice with 4T1.2 tumours showed interesting and unexpected outcomes. Initial results of the tumour growth inhibition study showed that a significant inhibition of growth was exhibited by the complex over the free inhibitor and the control. However, the metastatic potential of both free marimastat and the complex were higher than the control indicating likely problems with the experimental protocol. Further experiments are needed to determine the potential of such complexes as hypoxia activated prodrugs but there appears at least to be some promise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a technique for team design based on cognitive work analysis (CWA). We first develop a rationale for this technique by discussing the limitations of conventional approaches for team design in light of the special characteristics of first-of-a-kind, complex systems. We then introduce the CWA-based technique for team design and provide a case study of how we used this technique to design a team for a first-of-a-kind, complex military system during the early stages of its development. In addition to illustrating the CWA-based technique by example, the case study allows us to evaluate the technique. This case study demonstrates that the CWA-based technique for team design is both feasible and useful, although empirical validation of the technique is still necessary. Applications of this work include the design of teams for first-of-a-kind, complex systems in military, medical, and industrial domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Few studies have demonstrated that innate lymphocytes play a major role in preventing spontaneous tumor formation. We evaluated the development of spontaneous tumors in mice lacking beta-2 microglobulin (beta2m; and thus MHC class I, CD1d, and CD16) and/or perform, since these tumor cells would be expected to activate innate effector cells. Approximately half the cohort of perform gene-targeted mice succumbed to spontaneous disseminated B cell lymphomas and in mice that also lacked beta2m, the lymphomas developed earlier (by more than 100 d) and with greater incidence (84%). B cell lymphomas from perforin/beta2m gene-targeted mice effectively primed cell-mediated cytotoxicity and perform, but not IFN-gamma, IL-12, or IL-18, was absolutely essential for tumor rejection. Activated NK1.1(+) and gammadeltaTCR(+) T cells were abundant at the tumor site, and transplanted tumors were strongly rejected by either, or both, of these cell types. Blockade of a number of different known costimulatory pathways failed to prevent tumor rejection. These results reflect a critical role for NK cells and gammadeltaTCP(+) T cells in innate immune surveillance of B cell lymphomas, mediated by as yet undetermined pathway(s) of tumor recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antigen recognition by cytotoxic CD8 T cells is dependent upon a number of critical steps in MHC class I antigen processing including proteosomal cleavage, TAP transport into the endoplasmic reticulum, and MHC class 1 binding. Based on extensive experimental data relating to each of these steps there is now the capacity to model individual antigen processing steps with a high degree of accuracy. This paper demonstrates the potential to bring together models of individual antigen processing steps, for example proteosome cleavage, TAP transport, and MHC binding, to build highly informative models of functional pathways. In particular, we demonstrate how an artificial neural network model of TAP transport was used to mine a HLA-binding database so as to identify H LA-binding peptides transported by TAP. This integrated model of antigen processing provided the unique insight that HLA class I alleles apparently constitute two separate classes: those that are TAP-efficient for peptide loading (HLA-B27, -A3, and -A24) and those that are TAP-inefficient (HLA-A2, -B7, and -B8). Hence, using this integrated model we were able to generate novel hypotheses regarding antigen processing, and these hypotheses are now capable of being tested experimentally. This model confirms the feasibility of constructing a virtual immune system, whereby each additional step in antigen processing is incorporated into a single modular model. Accurate models of antigen processing have implications for the study of basic immunology as well as for the design of peptide-based vaccines and other immunotherapies. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PREDBALB/c is a computational system that predicts peptides binding to the major histocompatibility complex-2 (H2(d)) of the BALB/c mouse, an important laboratory model organism. The predictions include the complete set of H2(d) class I ( H2-K-d, H2-L-d and H2-D-d) and class II (I-E-d and I-A(d)) molecules. The prediction system utilizes quantitative matrices, which were rigorously validated using experimentally determined binders and non-binders and also by in vivo studies using viral proteins. The prediction performance of PREDBALB/c is of very high accuracy. To our knowledge, this is the first online server for the prediction of peptides binding to a complete set of major histocompatibility complex molecules in a model organism (H2(d) haplotype). PREDBALB/c is available at http://antigen.i2r.a-star.edu.sg/predBalbc/.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present study was to characterize the innate immune responses induced by in vitro stimulation of bovine primary mammary epithelial cells (bMEC) using gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. Quantitative real-time PCR (qRT-PCR) was employed to examine the mRNA expression of a panel of 22 cytokines, chemokines, beta-defensins and components of the Toll-Like Receptor signaling pathway. Stimulation of bMEC with LPS for 24 h elicited a marked increase in mRNA expression for IL-1 beta, IL-8, TNF alpha, CXCL6 and beta-defensin while members of the Toll-Like Receptor pathway.. although present, were largely unaffected. Surprisingly, stimulation of these cells with LTA for 24 h did not significantly alter the expression of these genes. A time course of the expression of IL-1 beta, IL-8, TNF alpha, CXCL6 and beta-defensin was subsequently performed. The mRNA levels of all genes increased rapidly after stimulation for 2-4 h with both LPS and LTA but only the former treatment resulted in sustained responses. In contrast, the increased gene expression for LTA stimulated cells returned to resting levels after 8-16 h with the exception of beta-defensin, which remained up-regulated. The limited and unsustained cytokine response to LTA may explain why mastitis caused by gram-positive bacteria has greater potential for chronic intra-mammary infection than gram-negative infection. It was concluded that bovine mammary epithelial cells have a strong but differential capacity to mount innate immune responses to bacterial cell wall components. Crown Copyright (c) 2005 Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Innate immunity plays a vital role in the protection of the bovine mammary gland against mastitis. Until recently, the migration of effector cells such as neutrophils and monocytes into the mammary gland was thought to provide the only defence against invading pathogens. However, mammary epithelial cells may also play an important role in the immune response, contributing to the innate defence of the mammary tissue through secretion of antimicrobial peptides and attraction of circulating immune effector cells. This paper reviews the innate immune pathways in mammary epithelial cells and examines their role in the initiation of an innate immune response to Gram-positive and Gram-negative bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Microarray transcript profiling has the potential to illuminate the molecular processes that are involved in the responses of cattle to disease challenges. This knowledge may allow the development of strategies that exploit these genes to enhance resistance to disease in an individual or animal population. Results: The Bovine Innate Immune Microarray developed in this study consists of 1480 characterised genes identified by literature searches, 31 positive and negative control elements and 5376 cDNAs derived from subtracted and normalised libraries. The cDNA libraries were produced from 'challenged' bovine epithelial and leukocyte cells. The microarray was found to have a limit of detection of 1 pg/mu g of total RNA and a mean slide-to-slide correlation co-efficient of 0.88. The profiles of differentially expressed genes from Concanavalin A ( ConA) stimulated bovine peripheral blood lymphocytes were determined. Three distinct profiles highlighted 19 genes that were rapidly up-regulated within 30 minutes and returned to basal levels by 24 h; 76 genes that were upregulated between 2 - 8 hours and sustained high levels of expression until 24 h and 10 genes that were down-regulated. Quantitative real-time RT-PCR on selected genes was used to confirm the results from the microarray analysis. The results indicate that there is a dynamic process involving gene activation and regulatory mechanisms re-establishing homeostasis in the ConA activated lymphocytes. The Bovine Innate Immune Microarray was also used to determine the cross-species hybridisation capabilities of an ovine PBL sample. Conclusion: The Bovine Innate Immune Microarray has been developed which contains a set of well-characterised genes and anonymous cDNAs from a number of different bovine cell types. The microarray can be used to determine the gene expression profiles underlying innate immune responses in cattle and sheep.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Original antigenic sin is failure to mount effective immunity to virus variants in a previously virus infected host. We have previously shown that prior immunity to a virus capsid protein inhibits induction from naive CD8 T cells of an IFN-g response to a MHC class I restricted epitope linked to the capsid protein, following immunisation with a capsid expressing the class I restricted epitope. The inhibition is independent of pre-existing antibody to the viral capsid, and the inhibition is observed in animal lacking B cells. CD8 restricted viral capsid specific T cell responses are also not required, but the inhibition is not observed in IL10 knockout mice. We now demonstrate that capsid antigen primed CD4+ T cells secrete IL10 in response to capsid antigen presented by DC, and deviate CD8 cells specific for the linked MHC Class I restricted epitope from IFN-g production to IL-5 production. Neutralizing IL10, either in vitro or in vivo, restores induction following immunisation of an antigen specific IFN-g response to an MHC Class I restricted epitope. This finding demonstrates a strategy for overcoming bias towards a Tc2 response to MHC Class I epitopes upon immunisation of a host already primed to antigen, facilitating immunotherapy for chronic viral infection or cancer

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IL-1 is a key proinflammatory driver of several autoimmune diseases including juvenile inflammatory arthritis, diseases with mutations in the NALP/cryopyrin complex and Crohn's disease, and is genetically or clinically associated with many others. IL-1 is a pleiotropic proinflammatory cytokine; however the mechanisms by which increased IL-1 signaling promotes autoreactive T cell activity are not clear. Here we show that autoimmune-prone NOD and IL-1 receptor antagonist-deficient C57BL/6 mice both produce high levels of IL-1, which drives autoreactive effector cell expansion. IL-1 beta drives proliferation and cytokine production by CD4(+)CD25(+)FoxP3(-) effector/memory T cells, attenuates CD4(+)CD25(+)FoxP3(+) regulatory T cell function, and allows escape of CD4(+)CD25(-) autoreactive effectors from suppression. Thus, inflammation or constitutive overexpression of IL-1 beta in a genetically predisposed host can promote autoreactive effector T cell expansion and function, which attenuates the ability of regulatory T cells to maintain tolerance to self.