81 resultados para Hyperthyroidism, body composition
Resumo:
Introduction Bioelectrical impedance analysis (BIA) is a useful field measure to estimate total body water (TBW). No prediction formulae have been developed or validated against a reference method in patients with pancreatic cancer. The aim of this study was to assess the agreement between three prediction equations for the estimation of TBW in cachectic patients with pancreatic cancer. Methods Resistance was measured at frequencies of 50 and 200 kHz in 18 outpatients (10 males and eight females, age 70.2 +/- 11.8 years) with pancreatic cancer from two tertiary Australian hospitals. Three published prediction formulae were used to calculate TBW - TBWs developed in surgical patients, TBWca-uw and TBWca-nw developed in underweight and normal weight patients with end-stage cancer. Results There was no significant difference in the TBW estimated by the three prediction equations - TBWs 32.9 +/- 8.3 L, TBWca-nw 36.3 +/- 7.4 L, TBWca-uw 34.6 +/- 7.6 L. At a population level, there is agreement between prediction of TBW in patients with pancreatic cancer estimated from the three equations. The best combination of low bias and narrow limits of agreement was observed when TBW was estimated from the equation developed in the underweight cancer patients relative to the normal weight cancer patients. When no established BIA prediction equation exists, practitioners should utilize an equation developed in a population with similar critical characteristics such as diagnosis, weight loss, body mass index and/or age. Conclusions Further research is required to determine the accuracy of the BIA prediction technique against a reference method in patients with pancreatic cancer.
Resumo:
Prediction equations of body composition based on measurements of whole-body bioelectrical impedance analysis (BIA) have been found to be population-specific. It was hypothesised that this may be, in part, due to differences in proportional limb lengths between ethnic or racial groups. As a preliminary to a survey of body composition in urban Nigerians using BIA, the relative limb lengths of the three major tribal groups (Hausa, Yoruba and Ibo) were determined. We found small (5-9%) but significantly longer limb lengths in Nigerians compared to a Caucasian population, but no significant differences between tribes. This implies that BIA prediction equations generated in a Caucasian population are inappropriate for use in a Nigerian population.
Resumo:
Objective: To compare percentage body fat (%BF) for a given body mass index (BMI) among New Zealand European, Maori and Pacific Island children. To develop prediction equations based on bioimpedance measurements for the estimation of fat-free mass (FFM) appropriate to children in these three ethnic groups. Design: Cross-sectional study. Purposive sampling of schoolchildren aimed at recruiting three children of each sex and ethnicity for each year of age. Double cross-validation of FFM prediction equations developed by multiple regression. Setting: Local schools in Auckland. Subjects: Healthy European, Maori and Pacific Island children (n = 172, 83 M, 89 F, mean age 9.4 +/- 2.8(s. d.), range 5 - 14 y). Measurements: Height, weight, age, sex and ethnicity were recorded. FFM was derived from measurements of total body water by deuterium dilution and resistance and reactance were measured by bioimpedance analysis. Results: For fixed BMI, the Maori and Pacific Island girls averaged 3.7% lower % BF than European girls. For boys a similar relation was not found since BMI did not significantly influence % BF of European boys ( P = 0.18). Based on bioimpedance measurements a single prediction equation was developed for all children: FFM (kg) = 0.622 height (cm)(2)/ resistance +0.234 weight (kg)+1.166, R-2 = 0.96, s. e. e. = 2.44 kg. Ethnicity, age and sex were not significant predictors. Conclusions: A robust equation for estimation of FFM in New Zealand European, Maori and Pacific Island children in the 5 - 14 y age range that is more suitable than BMI for the determination of body fatness in field studies has been developed. Sponsorship: Maurice and Phyllis Paykel Trust, Auckland University of Technology Contestable Grants Fund and the Ministry of Health.
Resumo:
The aim of this study was to compare the measurement of total body water (TBW) by deuterium ((H2O)-H-2) dilution and bioelectrical impedance analysis (BIA) in patients with cystic fibrosis (CF) and healthy controls. Thirty-six clinically stable patients with CF (age 25.4 +/- 5.6 yrs) and 42 healthy controls (age 25.4 +/- 4.8) were recruited into this study. TBW was measured by (H2O)-H-2 dilution and predicted by BIA in patients and controls. The TBW predicted from BIA was significantly different from TBW as measured using (H2O)-H-2 in patients (P
Resumo:
Objective: Children with myelomeningocele (MMC) have an altered body composition and an atypical distribution of total body water (TBW). The aim of the present study was to determine the accuracy of current predictive equations, based on bioelectrical impedance analysis (BIA), in determining TBW when compared with measured TBW using deuterium dilution. Methods: Fourteen children with MMC were measured for whole body BIA and TBW (using deuterium dilution and the Plateau method). Total body water was predicted using equations based on the resistance and characteristic frequency from BIA measurements and heights of subjects. Results: The mean measured TBW was 15.46 +/- 8.28 L and the mean predictions for TBW using equations based on the resistance and characteristic frequency from BIA measurements and heights of subjects were 18.29 +/- 8.41 L, 17.72 +/- 11.42 L and 12.51 +/- 7.59 L, respectively. The best correlation was found using characteristic frequency. The limits of agreement between measured and predicted TBW values using Bland-Altman analysis were large. Conclusions: The present study suggests that the prediction of TBW in children with MMC can be made accurately using the equation of Cornish et al . based on BIA measurements of characteristic frequency.
Resumo:
Background: Body cell mass (BCM) may be estimated in clinical practice to assess functional nutritional status, eg, in patients with anorexia nervosa. Interpretation of the data, especially in younger patients who are still growing, requires appropriate adjustment for size. Previous investigations of this general issue have addressed chemical rather than functional components of body composition and have not considered patients at the extremes of nutritional status, in whom the ability to make longitudinal comparisons is of particular importance. Objective: Our objective was to determine the power by which height should be raised to adjust BCM for height in women of differing nutritional status. Design: BCM was estimated by K-40 counting in 58 healthy women, 33 healthy female adolescents, and 75 female adolescents with anorexia nervosa. The relation between BCM and height was explored in each group by using log-log regression analysis. Results: The powers by which height should be raised to adjust BCM,A,ere 1.73. 1.73, and 2.07 in the women, healthy female adolescents, and anorexic female adolescents, respectively. A simplified version of the index, BCM/height(2), was appropriate for all 3 categories and was negligibly correlated with height. Conclusions: In normal-weight women, the relation between height and BCM is consistent with that reported previously between height and fat-free mass. Although the consistency of the relation between BCM and fat-free mass decreases with increasing weight loss, the relation between height and BCM is not significantly different between normal-weight and underweight women. The index BCM/height(2) is easy to calculate and applicable to both healthy and underweight women. This information may be helpful in interpreting body-composition data in clinical practice.
Resumo:
Background: Tuberculosis is an important cause of wasting. The functional consequences of wasting and recovery may depend on the distribution of lost and gained nutrient stores between protein and fat masses. Objective: The goal was to study nutrient partitioning, ie, the proportion of weight change attributable to changes in fat mass (FM) versus protein mass (PM), during anti mycobacterial treatment. Design: Body-composition measures were made of 21 men and 9 women with pulmonary tuberculosis at baseline and after 1 and 6 mo of treatment. All subjects underwent dual-energy X-ray absorptiometry and deuterium bromide dilution tests, and a four-compartment model of FM, total body water (TBW), bone minerals (BM), and PM was derived. The ratio of PM to FM at any time was expressed as the energy content (p-ratio). Changes in the p-ratio were related to disease severity as measured by radiologic criteria. Results: Patients gained 10% in body weight (P < 0.001) from baseline to month 6. This was mainly due to a 44% gain in FM (P < 0.001); PM, BM, and TBW did not change significantly. Results were similar in men and women. The p-ratio decreased from baseline to month 1 and then fell further by month 6. Radiologic disease severity was not correlated with changes in the p-ratio. Conclusions: Microbiological cure of tuberculosis does not restore PM within 6 mo, despite a strong anabolic response. Change in the p-ratio is a suitable parameter for use in studying the effect of disease on body composition because it allows transformation of such effects into a normal distribution across a wide range of baseline proportion between fat and protein mass.
Resumo:
Purpose: Although the beneficial effects of estrogen use on cardiovascular and cognitive function in postmenopausal women have been recently discredited, controversy remains regarding its usefulness for maintaining skeletal muscle mass or strength. Therefore, the purpose of this study was to determine whether estrogen use is associated with enhanced muscle composition and, if so, whether this translates into improved strength and physical function. Methods: Cross-sectional analysis of 840 well-functioning community-dwelling white women (current estrogen replacement therapy (ERT) users = 259, nonusers = 581) aged 70-79 yr participating in the Health, Aging and Body Composition Study. Muscle composition of the midthigh by computed tomography included cross-sectional area (CSA) of the quadriceps, hamstrings, intermuscular fat and subcutaneous fat, and muscle attenuation in Hounsfield units (HU) as a measure of muscle density. Isometric hand grip and isokinetic knee extensor strength were assessed by dynamometry. Physical function was assessed using a summary scale that included usual 6-m walk and narrow walk speed, repeated chair stands, and standing balance. Results: In analyses of covariance adjusted for relevant confounders. quadriceps muscle CSA and HU were greater in Current ERT than non-ERT women (P < 0.05). Grip strength was also greater (P < 0.05) in women taking ERT while knee extensor strength approached significance (P < 0.10). However, differences in muscle composition and strength were modest at <= 3.3%. There was no difference by ERT status for the hamstring, muscles. fat CSA. or for physical function. Conclusion: The associations between ERT and muscle composition and strength were minor and did not translate into improved physical function. Initiation of ERT for preservation of muscle composition and function may not be indicated.
Resumo:
Bioelectrical impedance measurements are widely used for the study of body composition. Commonly measurements are made at 50 kHz to estimate total body water or at low frequencies (< 10 kHz) to estimate extracellular fluid volume. These measurements can be obtained as single measurements at discrete frequencies, or as fitted data interpolated from plots of measurements made at multiple frequencies. This study compared single frequency and multiple frequency (MF) measurements taken in the intensive care environment. MF bioimpedance (4-1000 kHz) was measured on an adult with and without cardiorespiratory monitoring, and on babies in the neonatal intensive care unit. Measurements obtained at individual frequencies were plotted against frequency and examined for the presence of outlying points. Fitted data for measurements obtained at 5 kHz and 50 kHz with and without cardiorespiratory monitoring were compared. Significant artefacts were detected in measurements at approximately 50 kHz and at integral divisions of this frequency as a result of interference from cardiorespiratory monitors. Single frequency measurements taken at these frequencies may be subject to errors that would be difficult to detect without the aid of information obtained from MF measurements.
Resumo:
Our objective was to assess the contribution of lean body mass (LBM) and fat body mass (FBM) to areal bone mineral density (aBMD) in women during the years surrounding menopause. We used a 12-year observational design. Participants included 75 Caucasian women who were premenopausal, 53 of whom were available for follow-up. There were two measurement periods: baseline and 12-year follow-up. At both measurement periods, bone mineral content and aBMD of the proximal femur, posterior-anterior lumbar spine, and total body was assessed using dual-energy X-ray absorptiometry (DXA). LBM and FBM were derived from the total-body scans. General health, including current menopausal status, hormone replace therapy use, medication use, and physical activity, was assessed by questionnaires. At the end of the study, 44% of the women were postmenopausal. After controlling for baseline aBMD, current menopausal status, and current hormone replacement therapy, we found that change in LBM was independently associated with change in aBMD of the proximal femur (P = 0.001). The cross-sectional analyses also indicated that LBM was a significant determinant of aBMD of all three DXA-scanned sites at both baseline and follow-up. These novel longitudinal data highlight the important contribution of LBM to the maintenance of proximal femur bone mass at a key time in women's life span, the years surrounding menopause.
Resumo:
Multifrequency bioimpedance analysis has the potential to provide a non-invasive technique for determining body composition in live cattle. A bioimpedance meter developed for use in clinical medicine was adapted and evaluated in 2 experiments using a total of 31 cattle. Prediction equations were obtained for total body water, extracellular body water, intracellular body water, carcass water and carcass protein. There were strong correlations between the results obtained through chemical markers and bioimpedance analysis when determined in cattle that had a wide range of liveweights and conditions. The r(2) values obtained were 0.87 and 0.91 for total body water and extracellular body water respectively. Bioimpedance also correlated with carcass water, measured by chemical analysis (r(2) = 0.72), but less well with carcass protein (r(2) = 0.46). These correlations were improved by inclusion of liveweight and sex as variables in multiple regression analysis. However, the resultant equations were poor predictors of protein and water content in the carcasses of a group of small underfed beef cattle, that had a narrow range of liveweights. In this case, although there was no statistical difference between the predicted and measured values overall, bioimpedance analysis did not detect the differences in carcass protein between the 2 groups that were apparent following chemical analysis. Further work is required to determine the sensitivity of the technique in small underfed cattle, and its potential use in heavier well fed cattle close to slaughter weight.