62 resultados para Hematúria glomerular
Resumo:
Olfactory marker protein (OMP) is expressed by mature primary olfactory sensory neurons during development and in adult mice. In mice that lack OMP, olfactory sensory neurons have perturbed electrophysiological activity, and the mice exhibit altered responses and behavior to odor stimulation. To date, defects in axon guidance in mice that lack OMP have not been investigated. During development of the olfactory system in mouse, primary olfactory axons often overshoot their target glomerular layer and project into the deeper external plexiform layer. These aberrant axonal projections are normally detected within the external plexiform layer up to postnatal day 12. We have examined the projections of primary olfactory axons in OMP-tau:LacZ mice and OMP-GFP mice, two independent lines in which the OMP coding region has been replaced by reporter molecules. We found that axons overshoot their target layer and grow into the external plexiform layer in these OMP null mice as they do in wild-type animals. However, in the absence of OMP, overshooting axons are more persistent and remain prominent until 5 weeks postnatally, after which their numbers decrease. Overshooting axons are still present in these mice even at 8 months of age. In heterozygous mice, axons also overshoot into the external plexiform layer; however, there are fewer axons, and they project for shorter distances, compared with those in a homozygous environment. Our results suggest that perturbed electrophysiological responses, caused by loss of OMP in primary olfactory neurons, reduce the ability of primary olfactory axons to recognize their glomerular target. © 2005 Wiley-Liss, Inc.
Resumo:
One key role of the renal proximal tubule is the reabsorption of proteins from the glomerular filtrate by constitutive receptor-mediated endocytosis. In the opossum kidney (OK) renal proximal tubule cell line, inhibition of protein kinase C (PKC) reduces albumin uptake, although the isoforms involved and mechanisms by which this occurs have not been identified. We used pharmacological and molecular approaches to investigate the role of PKC-α in albumin endocytosis. We found that albumin uptake in OK cells was inhibited by the pan-PKC blocker bisindolylmaleimide-1 and the isoform-specific PKC blockers Go-6976 and 2',3,3',4,4'-hexahydroxy-1,1'-biphenyl-6,6'-dimethanol dimethyl ether, indicating a role for PKC-α. Overexpression of a kinase deficient PKC-α(K368R) but not wild-type PKC-α significantly reduced albumin endocytosis. Western blot analysis of fractionated cells showed an increased association of PKC-α-green fluorescent protein with the membrane fraction within 10-20 min of exposure to albumin. We used phalloidin to demonstrate that albumin induces the formation of clusters of actin at the apical surface of OK cells and that these clusters correspond to the location of albumin uptake. These clusters were not present in cells grown in the absence of albumin. In cells treated either with PKC inhibitors or overexpressing kinase-deficient PKC-α(K368R) this actin cluster formation was significantly reduced. This study identifies a role for PKC-α in constitutive albumin uptake in OK cells by mediating assembly of actin microfilaments at the apical membrane.
Resumo:
Background: The development of nervous systems involves reciprocal interactions between neurons and glia. In the Drosophila olfactory system, peripheral glial cells arise from sensory lineages specified by the basic helix- loop- helix transcription factor, Atonal. These glia wrap around the developing olfactory axons early during development and pattern the three distinct fascicles as they exit the antenna. In the moth Manduca sexta, an additional set of central glia migrate to the base of the antennal nerve where axons sort to their glomerular targets. In this work, we have investigated whether similar types of cells exist in the Drosophila antenna. Results: We have used different P( Gal4) lines to drive Green Fluorescent Protein ( GFP) in distinct populations of cells within the Drosophila antenna. Mz317:: GFP, a marker for cell body and perineural glia, labels the majority of peripheral glia. An additional similar to 30 glial cells detected by GH146:: GFP do not derive from any of the sensory lineages and appear to migrate into the antenna from the brain. Their appearance in the third antennal segment is regulated by normal function of the Epidermal Growth Factor receptor and small GTPases. We denote these distinct populations of cells as Mz317- glia and GH146- glia respectively. In the adult, processes of GH146- glial cells ensheath the olfactory receptor neurons directly, while those of the Mz317- glia form a peripheral layer. Ablation of GH146- glia does not result in any significant effects on the patterning of the olfactory receptor axons. Conclusion: We have demonstrated the presence of at least two distinct populations of glial cells within the Drosophila antenna. GH146- glial cells originate in the brain and migrate to the antenna along the newly formed olfactory axons. The number of cells populating the third segment of the antenna is regulated by signaling through the Epidermal Growth Factor receptor. These glia share several features of the sorting zone cells described in Manduca.
Resumo:
The end point of immune and nonimmune renal injury typically involves glomerular and tubulointerstitial fibrosis. Although numerous studies have focused on the events that lead to renal fibrosis, less is known about the mechanisms that promote cellular repair and tissue remodeling. Described is a model of renal injury and repair after the reversal of unilateral ureteral obstruction (UUO) in male C57b1/6J mice. Male mice (20 to 25 g) underwent 10 d of UUO with or without 1, 2, 4, or 6 wk of reversal of UUO (R-UUO). UUO resulted in cortical tubular cell atrophy and tubular dilation in conjunction with an almost complete ablation of the outer medulla. This was associated with interstitial macrophage infiltration; increased hydroxyproline content; and upregulated type I, III, IV, and V collagen expression. The volume density of kidney occupied by renal tubules that exhibited a brush border was measured as an assessment of the degree of repair after R-UUO. After 6 wk of R-UUO, there was an increase in the area of kidney occupied by repaired tubules (83.7 +/- 5.9%), compared with 10 d UUO kidneys (32.6 +/- 7.3%). This coincided with reduced macrophage numbers, decreased hydroxyproline content, and reduced collagen accumulation and interstitial matrix expansion, compared with obstructed kidneys from UUO mice. GFR in the 6-wk R-UUO kidneys was restored to 43 to 88% of the GFR in the contralateral unobstructed kidneys. This study describes the regenerative potential of the kidney after the established interstitial matrix expansion and medullary ablation associated with UUO in the adult mouse.
Resumo:
Essential hypertension is one of the most common diseases in the Western world, affecting about 26.4% of the adult population, and it is increasing (1). Its causes are heterogeneous and include genetic and environmental factors (2), but several observations point to an important role of the kidney in its genesis (3). In addition to variations in tubular transport mechanisms that could, for example, affect salt handling, structural characteristics of the kidney might also contribute to hypertension. The burden of chronic kidney disease is also increasing worldwide, due to population growth, increasing longevity, and changing risk factors. Although single-cause models of disease are still widely promoted, multideterminant or multihit models that can accommodate multiple risk factors in an individual or in a population are probably more applicable (4,5). In such a framework, nephron endowment is one potential determinant of disease susceptibility. Some time ago, Brenner and colleagues (6,7) proposed that lower nephron numbers predispose both to essential hypertension and to renal disease. They also proposed that hypertension and progressive renal insufficiency might be initiated and accelerated by glomerular hypertrophy and intraglomerular hypertension that develops as nephron number is reduced (8). In this review, we summarize data from recent studies that shed more light on these hypotheses. The data supply a new twist to possible mechanisms of the Barker hypothesis, which proposes that intrauterine growth retardation predisposes to chronic disease in later life (9). The review describes how nephron number is estimated and its range and some determinants and morphologic correlates. It then considers possible causes of low nephron numbers. Finally, associations of hypertension and renal disease with reduced nephron numbers are considered, and some potential clinical implications are discussed.
Resumo:
Rates of kidney disease among several indigenous groups have been shown to be substantially higher than corresponding non-indigenous groups. This excess has been clearly shown among Aboriginal Australians with respect to both end-stage kidney disease and early kidney disease. Rates of cardiovascular disease among Aboriginal Australians are also very high, as are rates of diabetes, smoking, and possibly overweight and obesity. These factors have been traditionally linked with cardiovascular and renal disease as part of a broader metabolic syndrome. However, the links and interfaces between cardiovascular and kidney disease in this environment extend beyond these traditional factors. The factors associated with atherosclerosis have expanded in recent years to include markers of inflammation, some infection, antioxidants, and other non-traditional risk factors. Given the high rates of acute infection and poor living conditions endured by many indigenous people, one might expect these non-traditional risk factors to be highly prevalent. In this review, we explore the relationships between markers of inflammation, some serological markers of infection, and other selected markers and both cardiovascular and renal disease. In doing so, we demonstrate links between kidney and cardiovascular disease at a number of levels, beyond the traditional cardiovascular/renal risk factors. Many of these factors are beyond the control of the individual or even community; addressing these issues a broader focus and biopsychosocial model. (C) 2005 by the National Kidney Foundation, Inc.
Resumo:
Endothelial dysfunction in ischemic acute renal failure (IARF) has been attributed to both direct endothelial injury and to altered endothelial nitric oxide synthase ( eNOS) activity, with either maximal upregulation of eNOS or inhibition of eNOS by excess nitric oxide ( NO) derived from iNOS. We investigated renal endothelial dysfunction in kidneys from Sprague-Dawley rats by assessing autoregulation and endothelium-dependent vasorelaxation 24 h after unilateral ( U) or bilateral ( B) renal artery occlusion for 30 (U30, B30) or 60 min (U60, B60) and in sham-operated controls. Although renal failure was induced in all degrees of ischemia, neither endothelial dysfunction nor altered facilitation of autoregulation by 75 pM angiotensin II was detected in U30, U60, or B30 kidneys. Baseline and angiotensin II-facilitated autoregulation were impaired, methacholine EC50 was increased, and endothelium-derived hyperpolarizing factor ( EDHF) activity was preserved in B60 kidneys. Increasing angiotensin II concentration restored autoregulation and increased renal vascular resistance ( RVR) in B60 kidneys; this facilitated autoregulation, and the increase in RVR was abolished by 100 mu M furosemide. Autoregulation was enhanced by N-omega-nitro-L-arginine methyl ester. Peri-ischemic inhibition of inducible NOS ameliorated renal failure but did not prevent endothelial dysfunction or impaired autoregulation. There was no significant structural injury to the afferent arterioles with ischemia. These results suggest that tubuloglomerular feedback is preserved in IARF but that excess NO and probably EDHF produce endothelial dysfunction and antagonize autoregulation. The threshold for injury-producing, detectable endothelial dysfunction was higher than for the loss of glomerular filtration rate. Arteriolar endothelial dysfunction after prolonged IARF is predominantly functional rather than structural.
Resumo:
The constitutive reuptake of albumin from the glomerular filtrate by receptor-mediated endocytosis is a key function of the renal proximal tubules. Both the Cl- channel ClC-5 and the Na+-H+ exchanger isoform 3 are critical components of the macromolecular endocytic complex that is required for albumin uptake, and therefore the cell-surface levels of these proteins may limit albumin endocytosis. This study was undertaken to investigate the potential roles of the epithelial PDZ scaffolds, Na+-H+ exchange regulatory factors, NHERF1 and NHERF2, in albumin uptake by opossum kidney ( OK) cells. We found that ClC-5 co-immunoprecipitates with NHERF2 but not NHERF1 from OK cell lysate. Experiments using fusion proteins demonstrated that this was a direct interaction between an internal binding site in the C terminus of ClC-5 and the PDZ2 module of NHERF2. In OK cells, NHERF2 is restricted to the intravillar region while NHERF1 is located in the microvilli. Silencing NHERF2 reduced both cell-surface levels of ClC-5 and albumin uptake. Conversely, silencing NHERF1 increased cell-surface levels of ClC-5 and albumin uptake, presumably by increasing the mobility of NHE3 in the membrane and its availability to the albumin uptake complex. Surface biotinylation experiments revealed that both NHERF1 and NHERF2 were associated with the plasma membrane and that NHERF2 was recruited to the membrane in the presence of albumin. The importance of the interaction between NHERF2 and the cytoskeleton was demonstrated by a significant reduction in albumin uptake in cells overexpressing an ezrin binding-deficient mutant of NHERF2. Thus NHERF1 and NHERF2 differentially regulate albumin uptake by mechanisms that ultimately alter the cell-surface levels of ClC-5.
Resumo:
Only recently has the nephrology community moved beyond a fairly singular focus on terminal kidney failure to embrace population-based studies of earlier stages of disease, its markers and risk factors, and of interventions. Observations in developing countries, and in minority, migrant, and disadvantaged groups in westernized countries, have promoted these developments. We are only beginning to interpret renal disease in the context of public health history, social and health transitions, changing population demography, and competing mortality. Its intimate relationships to other health issues are being progressively exposed. Perspectives on the multideterminant etiology of most disease and the pedestrian nature of most risk factors are maturing. We are challenged to reconcile epidemiologic patterns with morphology in diseased renal tissue, and to consider structural markers, such as nephron number and glomerular size, as determinants of disease susceptibility. New work force models are mandated for population-based studies and intervention programs. Intervention programs need to be integrated with other chronic disease initiatives and nested in a matrix of systematic primary care, and although flexible to changing needs, must be sustained over the long term. Cross-disciplinary collaboration is essential in designing those programs, and in promoting them to health-care funders. Substantial expansion and restructuring of the discipline is needed for the nephrology community to participate effectively in those processes.
Resumo:
Objective: Previous studies investigating associations between serum lipids and renal disease have generally not taken into account dietary intake or physical activity - both known to influence circulating lipids. Furthermore, inclusion of patients on HMG-CoA reductase inhibitors may also have influenced findings due to the pleiotropic effect of this medication. Therefore, the aim of this study is to determine the relationships between serum lipids and renal function in a group of patients not taking lipid-lowering medication and taking into account dietary intake and physical activity. Methods: Data from 100 patients enrolled in the Lipid Lowering and Onset of Renal Disease (LORD) trial were used in this study. Patients were included with serum creatinine > 120 mu mol/l, and excluded if they were taking lipid-lowering medication. Unadjusted and adjusted relationships were determined between fasting serum lipid concentrations (total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and total cholesterol/HDL ratio) and measures of renal function (estimated glomerular filtration rate (eGFR), creatinine clearance and serum creatinine) and urinary protein excretion. Results: Significant (p < 0.05) negative unadjusted relationships were found between lipids (total cholesterol, LDL and HDL cholesterol) and serum creatinine. In support of these findings, logarithmically-transformed lipids (total cholesterol, LDL and HDL cholesterol) were significantly associated with eGFR and creatinine clearance although the effects were of a smaller magnitude. Adjustment for dietary saturated fat intake and physical activity did not substantially change these effects. Conclusion: These data do not support the premise that lipids are associated with renal dysfunction in patients with normocholesterolemia.
Resumo:
The total number of nephrons in normal human kidneys varies over a 10-fold range. This variation in total nephron number leads us to question whether low nephron number increases the risk of renal disease in adulthood. This review considers the available evidence in humans linking low nephron number/reduced nephron endowment and the susceptibility to renal disease. Total nephron number in humans has been directly correlated with birth weight and inversely correlated with age, mean glomerular volume, and hypertension. Low nephron number may be the result of suboptimal nephrogenesis during kidney development and/or loss of nephrons once nephrogenesis has been completed. Low nephron number is frequently, but not always, associated with hypertrophy of remaining glomeruli. This compensatory hypertrophy has also been associated with a greater susceptibility for kidney disease. Three human studies have reported reduced nelphron number in subjects with a history of hypertension. This correlation has been observed in White Europeans, White Americans (but not African Americans) and Australian Aborigines. Studies in additional populations are required, as well as a greater understanding of the fetal environmental and genetic determinants of low nephron number.
Resumo:
Primary sensory neurons in the vertebrate olfactory systems are characterised by the differential expression of distinct cell surface carbohydrates. We show here that the histo-blood groups Sda (or CT1 antigen) and H are expressed by primary sensory neurons in the olfactory system, while the blood group A carbohydrate is expressed by a subset of vomeronasal neurons only in the developing accessory olfactory system. We have used both loss-of-function and gain-of-function approaches to manipulate expression of these carbohydrates in the olfactory system. In null mutant mice lacking the alpha(1,2)fucosyltransferase FUT1, the blood group H and A carbohydrates were not expressed in the olfactory systems which caused delayed development of the nerve fibre and glomerular layers in the main olfactory bulb. In contrast, ubiquitous expression of blood group A on olfactory axons in gain-of-function transgenic mice perturbed the ability of vomeronasal axons to terminate in the accessory olfactory bulb and affected the selective targeting of axons in the main olfactory bulb. During regeneration following bulbectomy, vomeronasal axons were unable to effectively sort out from the main olfactory axons when blood group A was misexpressed. These results provide in vivo evidence for a role of specific cell surface carbohydrates during development and regeneration of the olfactory nerve pathways.
Resumo:
Primary sensory neurons in the vertebrate olfactory systems are characterised by the differential expression of distinct cell surface carbohydrates. We show here that the histo-blood group H carbohydrate is expressed by primary sensory neurons in both the main and accessory olfactory systems while the blood group A carbohydrate is expressed by a subset of vomeronasal neurons in the developing accessory olfactory system. We have used both loss-of-function and gain-of-function approaches to manipulate expression of these carbohydrates in the olfactory system. In null mutant mice lacking the alpha(1,2)fucosyltransferase FUT1, the absence of blood group H carbohydrate resulted in the delayed maturation of the glomerular layer of the main olfactory bulb. In addition, ubiquitous expression of blood group A on olfactory axons in gain-of-function transgenic mice caused mis-routing of axons in the glomerular layer of the main olfactory bulb and led to exuberant growth of vomeronasal axons in the accessory olfactory bulb. These results provide in vivo evidence for a role of specific cell surface carbohydrates during development of the olfactory nerve pathways. (c) 2006 Elsevier Inc. All rights reserved.