70 resultados para Green construction
Resumo:
This study describes the developmental changes in pulmonary surfactant (PS) lipids throughout incubation in the sea turtle, Chelonia mydas. Total phospholipid (PL), disaturated phospholipid (DSP) and cholesterol (Chol) harvested from lung washings increased with advancing incubation, where secretion was maximal at pipping, coincident with the onset of pulmonary ventilation. The DSP/PL ratio increased, whereas the Chol/PL and the Chol/DSP ratio declined throughout development. The phospholipids, therefore, are independently regulated from Chol and their development matches that of mammals. To explore whether hypoxia could elicit an effect on the development of the PS system, embryos were exposed to a chronic dose of 17% O-2 for the final similar to 40% of incubation. Hypoxia did not affect incubation time, absolute, nor relative abundance of the surfactant lipids, demonstrating that the development of the system is robust and that embryonic development continues unabated under mild hypoxia. Hypoxia-incubated hatchlings had lighter wet lung weights than those from normoxia, inferring that mild hypoxia facilitates lung clearance in this species. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Four temperature data-loggers were placed in each of five green sea turtle nests on Heron Island in the 1998-99 nesting season. Temperatures in all nests increased as incubation progressed due to general sand heating and increased metabolic heat production of the developing embryos. Even at the top of nests no daily diurnal fluctuation in temperature was evident. The temperature of eggs in the middle of the nest increased above those in the nest periphery during the last third of incubation. However, this metabolic nest heating would have little effect on hatchling sex ratio because it occurred after the sex-determining period. Small differences in temperature between regions of a nest persisted throughout incubation and may be important in ensuring the production of at least some individuals of the opposite sex in nests that have temperatures close to either the all-male or all-female determining temperatures. Location and degree of shading of nests had little effect on mean nest temperature, but deeper nests were generally cooler and therefore were predicted to produce a higher proportion of males than were shallower nests. Nest temperature profile data indicated that the 1998-99 nesting season on Heron Island would have produced a strongly female-biased sex ratio amongst hatchlings.
Resumo:
Eggs from the Heron Island, Great Barrier Reef, nesting population of green turtles (Chelonia mydas) were incubated at all-male-determining (26 degreesC) and all-female-determining (30 degreesC) temperatures. Oxygen consumption and embryonic growth were monitored throughout incubation, and hatchling masses and body dimensions were measured from both temperatures. Eggs hatched after 79 and 53 days incubation at 26 degreesC and 30 degreesC respectively. Oxygen consumption at both temperatures increased to a peak several days before hatching, a pattern typical of turtle embryos, and the rate of oxygen was higher at 30 degreesC than 26 degreesC. The total amount of energy consumed during incubation, and hatchling dimensions, were similar at both temperatures, but hatchlings from 26 degreesC had larger mass, larger yolk-free mass and smaller residual yolks than hatchlings from 30 degreesC. Because of the difference in mass of hatchlings, hatchlings from 30 degreesC had a higher production cost.
Resumo:
We develop a new iterative filter diagonalization (FD) scheme based on Lanczos subspaces and demonstrate its application to the calculation of bound-state and resonance eigenvalues. The new scheme combines the Lanczos three-term vector recursion for the generation of a tridiagonal representation of the Hamiltonian with a three-term scalar recursion to generate filtered states within the Lanczos representation. Eigenstates in the energy windows of interest can then be obtained by solving a small generalized eigenvalue problem in the subspace spanned by the filtered states. The scalar filtering recursion is based on the homogeneous eigenvalue equation of the tridiagonal representation of the Hamiltonian, and is simpler and more efficient than our previous quasi-minimum-residual filter diagonalization (QMRFD) scheme (H. G. Yu and S. C. Smith, Chem. Phys. Lett., 1998, 283, 69), which was based on solving for the action of the Green operator via an inhomogeneous equation. A low-storage method for the construction of Hamiltonian and overlap matrix elements in the filtered-basis representation is devised, in which contributions to the matrix elements are computed simultaneously as the recursion proceeds, allowing coefficients of the filtered states to be discarded once their contribution has been evaluated. Application to the HO2 system shows that the new scheme is highly efficient and can generate eigenvalues with the same numerical accuracy as the basic Lanczos algorithm.
Resumo:
The focus of this paper is the social construction of physical education teacher education (PETE) and its fate within the broader process of curriculum change in the physical activity field. Our task is to map the dimensions of a research program centered on the social construction of the physical activity field and PETE in higher education. Debates in the pages of Quest and elsewhere over the past two decades have highlighted not only the contentious nature of PETE practices and structures but also that PETE is changing. This paper offers one way of making sense of the ongoing process of contestation and struggle through the presentation of a theoretical framework. This framework, primarily drawing upon the work of Lave and Wenger (1991) and Bernstein (1990, 1996), is described before it is used to study the social construction of PETE in Australia. We assess the progress that has been made in developing this research program, and the questions already evident for further developments of a program of study of the physical activity field in higher education.
Resumo:
Jembrana disease virus (JDV) is a newly isolated and characterised bovine lentivirus. It causes an acute disease in Ball cattle (Bos javanicus). which can be readily transmitted to susceptible cattle with 17% mortality. There is as yet no treatment or preventive vaccine. We have developed a gene transfer vector system based on JDV that has three components. The first of the components is a bicistronic transfer vector plasmid that was constructed to contain cis-sequences from the JDV genome, including 5 '- and 3 ' -long terminal repeats (LTRs), 0.4 kb of truncated gag and 1.1 kb of 3 ' -env, a multiple cloning site to accommodate the gene(s) of interest for transfer, and an internal ribosome entry site plus the neomycin phosphotransferase (Neo) gene cassette for antibiotic selection. The second element is a packaging plasmid that contains trans-sequences. including gag, pol. vif, tar and rev: but without the env and packaging signals. The third is a plasmid encoding the G glycoprotein of vesicular stomatitis virus (VSV-G) to supply the vector an envelope for pseudotyping. Cotransfection of 293T cells with these three plasmid components produced VSV-G pseudotyped. disabled, replication defective, bicistronic JDV vectors encoding the green fluorescent protein (EGFP) and the Neo resistance selection maker simultaneously with a titre range of (0.4-1.2) x 10(6) CFU/ml. Transduction of several replicating primary and transformed cells from cattle, primate and human sources and importantly growth-arrested cells with the JDV vectors showed high efficiency of EGFP gene transfer at 35-75%, which was stable and the expression of EGFP was long term. Furthermore, these JDV vectors were designed to suit the inclusion and expression of genes corresponding to JDV specific proteins, such as gag or env, for the development of vaccines for Jembrana disease. This strategy should also be applicable to other bovine diseases as wall. The design and construction of the JDV vector system should facilitate the study of the lentivirology and pathogenesis of the diseases associated with JDV or other bovine virus infections. To our knowledge, this is the first such vector system developed from a cattle virus. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Retention of green leaf area in grain sorghum under post-anthesis drought, known as stay-green, is associated with greater biomass production, lodging resistance and yield. The stay-green phenomenon can be examined at a cell, leaf, or whole plant level. At a cell level, the retention of chloroplast proteins such as LHCP2, OEC33 and Rubisco until late in senescence has been reported in sorghum containing the KS19 source of stay-green, indicating that photosynthesis may be maintained for longer during senescence in these genotypes. At a leaf level, longevity of photosynthetic apparatus is intimately related to nitrogen (N) status. At a whole plant level, stay-green can be viewed as a consequence of the balance between N demand by the grain and N supply during grain filling. To examine some of these concepts, nine hybrids varying in the B35 and KS19 sources of stay-green were grown under a postanthesis water deficit. Genotypic variation in delayed onset and reduced rate of leaf senescence were explained by differences in specific leaf nitrogen (SLN) and N uptake during grain filling. Matching N supply from age-related senescence and N uptake during grain tilling with grain N demand found that the shortfall in N supply for grain filling was greater in the senescent than stay-green hybrids, resulting in more accelerated leaf senescence in the former. We hypothesise that increased N uptake by stay-green hybrids is a result of greater biomass accumulation during grain filling in response to increased sink demand (higher grain numbers) which, in turn, is the result of increased radiation use efficiency and transpiration efficiency due to higher SLN. Delayed leaf senescence resulting from higher SLN should, in turn, allow snore carbon and nitrogen to be allocated to the roots of stay-green hybrids during grain filling, thereby maintaining a greater capacity to extract N from the soil compared with senescent hybrids.
Resumo:
The numerical implementation of the complex image approach for the Green's function of a mixed-potential integralequation formulation is examined and is found to be limited to low values of k(0) rho (in this context k(0) rho = 2 pirho/ lambda(0), where rho is the distance between the source and the field points of the Green's function and lambda(0) is the free space wavelength). This is a clear limitation for problems of large dimension or high frequency where this limit is easily exceeded. This paper examines the various strategies and proposes a hybrid method whereby most of the above problems can be avoided. An efficient integral method that is valid for large k(0) rho is combined with the complex image method in order to take advantage of the relative merits of both schemes. It is found that a wide overlapping region exists between the two techniques allowing a very efficient and consistent approach for accurately calculating the Green's functions. In this paper, the method developed for the computation of the Green's function is used for planar structures containing both lossless and lossy media.
Resumo:
The Green-striped burrowing frog. Cyclorana alboguttata survives extended drought periods by burrowing underground and aestivating. These frogs remain immobile within cocoons of shed skin and Mucus during aestivation and emerge from their burrows upon heavy rains to feed and reproduce. Extended periods of immobilisation in mammals typically result in muscle atrophy and a decrease in muscle performance. We examined the effect of aestivation and hence prolonged immobilisation, on skeletal Muscle mass. in vitro muscle performance, and locomotor performance in C. alboguttata. Frogs were aestivated in soil for 3 months and were compared with control animals that remained active, were fed, and had a continual supply of water. Compared to the controls, the wet mass of the gastrocnemius. sartorius, gracilus major. semimembranosus. peroneus, extensor cruris, tibialis posticus and tibialis anticus longus of aestivators remained unchanged indicating no muscle atrophy. The in-vitro performance characteristics of the gastroenemius muscle were maintained and burst swimming speed Was Unaffected, requiring no recovery from the extended period of immobilisation associated with aestivation. This preservation of muscle size, contractile condition and locomotor performance through aestivation enables C. alboguttata to compress their life history into unpredictable windows of opportunity, whenever heavy rains occur.