78 resultados para Glutamate exitotoxicity
Resumo:
In this work we have defined the nature of the p-cresol and p-thiocresol adducts generated from acylium ions during HF cleavage, following contemporary Boc/benzyl solid-phase peptide synthesis. Contrary to the results in previous reports, we found that both p-cresol and p-thiocresol predominantly form. aryl esters under typical cleavage conditions. Initially we investigated a number of small peptides containing either a single glutamate residue or a C-terminal long-chain amino acid which allowed us to unambiguously characterize the scavenged side products. Whereas, the p-cresol esters are stable at 0 degrees C they rearrange irreversibly at higher temperatures (5-20 degrees C) to form aryl ketones. By contrast, p-thiocresol esters do not undergo a Fries rearrangement but readily undergo further additions of p-thiocresol to form ketenebisthioacetals and trithio ortho esters, even at low temperatures. Importantly, we found by LC/MS and FT-ICR MS analysis that peptides containing p-cresol esters at glutamyl side chains are susceptible to amidation and fragmentation reactions at these sites during standard mild base workup procedures. The significance of these side reactions was further demonstrated in the synthesis of neutrophil immobilization factor, a 26-residue peptide, containing four glutamic acid residues. The side reactions were largely avoided by mild hydrogen peroxide-catalyzed hydrolysis which converted the p-cresol adducts to the free carboxylic acids in near quantitative yield. The choice of p-cresol as a reversible acylium ion scavenger when coupled with the simple workup conditions described is broadly applicable to Boc/benzyl peptide synthesis and will significantly enhance the quality of peptides produced.
Resumo:
Symbiotic Aiptasia pulchella and freshly isolated zooxanthellae were incubated in (NaHCO3)-C-14 and NH4Cl for 1 to 240 min, and samples were analysed by reverse-phase high-performance liquid chromatography (HPLC) and an online radiochemical detector. NH4+ was first assimilated into C-14-glutamate and C-14-glutamine in the zooxanthellae residing in A. pulchella. The specific activities (dpm nmol(-1)) of C-14-glutamate and C-14-glutamine in vivo, were far greater in the zooxanthellae than in the host tissue, indicating that NH4+ was principally incorporated into the glutamate and glutamine pools of the zooxanthellae. C-14-alpha-ketoglutarate was taken up from the medium by intact A. pulchella and assimilated into a small amount of C-14-glutamate in the host tissue, but no C-14-glutamine was detected in the host fraction. The C-14-glutamate that was synthesized was most likely produced from transamination reactions as opposed to the direct assimilation of NH4+. The free aminoacid composition of the host tissue and zooxanthellae of A. pulchella was also measured. The results presented here demonstrate that NH4+ was initially assimilated by the zooxanthellae of A. pulchella.
Resumo:
PNU-87407 and PrNU-88509, beta-ketoamide anthelmintics that are structurally related to each other and to the salicylanilide anthelmintic closantel, exhibit different anthelmintic spectra and apparent toxicity in mammals, The basis for this differential pharmacology was examined in experiments that measured motility and adenosine triphosphate (ATP) levels in larval and adult stages of the gastrointestinal nematode, Haemonchus contortus, and in a vertebrate liver cell line and mitochondria, PNU-87407 and PNU-88509 both exhibited functional cross-resistance with closantel in larval migration assays using closantel-resistant and -sensitive isolates of H, contortus. Each compound reduced motility and,ATP levels in cultured adult H. contortus in a concentration- and time-dependent manner: however, motility was reduced more rapidly by PNU-88509, and ATP levels were reduced by lower concentrations of closantel than the beta-ketoamides. Tension recordings from segments of adult H, contortus showed that PNU-88509 induces spastic paralysis, while PNU-87407 and closantel induce flaccid paralysis of the somatic musculature. Marked differences in the actions of these compounds were also observed in the mammalian preparations. In Chang liver cells, ATP levels were reduced after 3 h exposures to greater than or equal to 0.25 mu M PNU-87407 1 mu M closantel or 10 mu M PNU-88509, Reductions in ATP caused by PNU-88509 were completely reversible, while the effects of closantel and PNU-87407; were irreversible. PNU-87407, closantel and PNU-88509 uncoupled oxidative phosphorylation in isolated rat liver mitochondria, inhibiting the respiratory control index (with glutamate or succinate as substrate) by 50% at concentrations of 0.14, 0.9 and 7.6 mu M respectively.
Resumo:
CaMKII is a calcium-activated kinase that is abundant in neurons and has been strongly implicated in memory and learning. Here we show that low-frequency stimulation of glutamatergic afferents in hippocampal slices from juvenile domestic chicks results in long-term depression of synaptic transmission. This reduction does not require activation of NMDA or metabotropic glutamate receptors and does not require a rise in postsynaptic calcium. However, buffering presynaptic calcium prevents the reduction of the excitatory postsynaptic potential or current that is induced by low-frequency stimulation. in addition, application of the calmodulin antagonist calmidazolium, or the specific CaMKII antagonist KN-93, completely blocks long-term depression. These findings demonstrate a newsy discovered form of long-term synaptic depression in the avian hippocampus.
Resumo:
The activities of conantokin-G (con-G), conantokin-T (con-T), and several novel analogues have been studied using polyamine enhancement of [H-3]MK-801 binding to human glutamate-N-methyl-D-aspartate (NMDA) receptors, and their structures have been examined using CD and H-1 NMR spectroscopy. The potencies of con-G[A7], con-G, and con-T as noncompetitive inhibitors of spermine-enhanced [H-3]MK-801 binding to NMDA receptor obtained from human brain tissue are similar to those obtained using rat brain tissue. The secondary structure and activity of con-G are found to be highly sensitive to amino acid substitution and modification. NMR chemical shift data indicate that con-G, con-G[D8,D17], and con-G[A7] have similar conformations in the presence of Ca2+. This consists of a helix for residues 2-16, which is kinked in the vicinity of Gla10. This is confirmed by 3D structure calculations on con-G[A7]. Restraining this helix in a linear form (i.e., con-G[A7,E10-K13]) results in a minor reduction in potency. Incorporation of a 7-10 salt-bridge replacement (con-G[K7-E10]) prevents helix formation in aqueous solution and produces a peptide with low potency. Peptides with the Leu5-Tyr5 substitution also have low potencies (con-G[Y5,A7] and con-G[Y5,K7]) indicating that Leu5 in con-G is important for full antagonist behavior. We have also shown that the Gla-Ala7 substitution increases potency, whereas the Gla-Lys7 substitution has no effect. Con-G and con-G[K7] both exhibit selectivity between NMDA subtypes from mid-frontal and superior temporal gyri, but not between sensorimotor and mid-frontal gyri. Asn8 and/or Asn17 appear to be important for the ability of con-G to function as an inhibitor of polyamine-stimulated [3H]MK-801 binding, but not in maintaining secondary structure. The presence of Ca2+ does not increase the potencies of con-G and con-T for NMDA receptors but does stabilize the helical structures of con-G, con-G[D8,D17], and, to a lesser extent, con-G[A7]. The NMR data support the existence of at least two independent Ca2+-chelating sites in con-G, one involving Gla7 and possibly Gla3 and the other likely to involve Gla10 and/or Gla14.
Resumo:
Whole-cell patch clamp recordings were made from pyramidal neurons in the rat lateral amygdala (LA). Synaptic currents were evoked by stimulating in either the external capsule (ec), internal capsule (ic) or basolateral nucleus (BLA). Stimulation of either the ic, ec or BLA evoked a glutamatergic excitatory synaptic current (EPSC) which was mediated by both non-NMDA and NMDA (N-methyl-D-aspartic acid) receptors, The ratio of the amplitude of the NMDA receptor-mediated component measured at +40 mV to the amplitude of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) component measured at -60 mV was similar regardless of whether EPSCs were evoked in the ec, ic or BLA. At resting membrane potentials, excitatory synaptic potentials evoked from either the ec or putative thalamic inputs were unaffected by application of the NMDA receptor antagonist APV. Spontaneous glutamatergic currents had two components to their decay phase. The slow component was selectively blocked by the NMDA receptor antagonist D-APV, indicating that AMPA and NMDA receptors are colocalized in spiny neurons. We conclude that pyramidal cells of the LA receive convergent inputs from the cortex, thalamus and basal nuclei. At all inputs, both AMPA/kainate and NMDA-type receptors are active and colocalized in the postsynaptic density.
Resumo:
Polyamine-induced inward rectification of cyclic nucleotide-gated channels was studied in inside-out patches from rat olfactory neurons. The polyamines, spermine, spermidine and putrescine, induced an 'instantaneous' voltage-dependent inhibition with K-d values at 0 mV of 39, 121 mu M and 2.7 mM, respectively. Hill coefficients for inhibition were significantly < 1, suggesting an allosteric inhibitory mechanism. The Woodhull model for voltage-dependent block predicted that all 3 polyamines bound to a site 1/3 of the electrical distance through the membrane from the internal side. Instantaneous inhibition was relieved at positive potentials, implying significant polyamine permeation. Spermine also induced exponential current relaxations to a 'steady-state' impermeant level. This inhibition was also mediated by a binding site 1/3 of the electrical distance through the pore, but with a K-d of 2.6 mM. Spermine inhibition was explained by postulating two spermine binding sites at a similar depth. Occupation of the first site occurs rapidly and with high affinity, but once a spermine molecule has bound, it inhibits spermine occupation of the second binding site via electrostatic repulsion. This repulsion is overcome at higher membrane potentials, but results in a lower apparent binding affinity for the second spermine molecule. The on-rate constant for the second spermine binding saturated at a low rate (similar to 200 sec(-1) at +120 mV), providing further evidence for an allosteric mechanism. Polyamine-induced inward rectification was significant at physiological concentrations.
Resumo:
We describe the isolation and characterisation of two putatively new acetylcholinesterase genes from the African cattle ticks Boophilus decoloratus and Rhipicephalus appendiculatus. The nucleotide sequences of these genes had 93% homology to each other and 95% and 91% identity, respectively, to the acetylcholinesterase gene from an Australian strain of another cattle tick, Boophilus microplus. Translation of the nucleotide sequences revealed putative amino acids that are essential for acetylcholinesterase activity: the active site serine, and the histidine and glutamate residues that associate with this serine to form the catalytic triad. All known acetylcholinesterases have three sets of cysteines that form disulfide bonds; however, the acetylcholinesterase genes of these three species of ticks encode only two sets of cysteines. Acetylcholinesterases of B. microplus from South Africa, Zimbabwe, Kenya and Mexico had 98-99% identity with acetylcholinesterase from B. microplus from Australia, whereas acetylcholinesterase from B. microplus from Indonesia was identical to that from Australia. Preliminary phylogenetic analyses surprisingly indicate that the acetylcholinesterases of ticks are closer phylogenetically to acetylcholinesterases of vertebrates than they are to those of other arthropods. (C) 1999 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Long-term depression has recently been shown to occur at glutamatergic synapses in the avian hippocampus and requires activation of calcium/calmodulin-dependent protein kinase II in the nerve terminal. Here using whole cell and intracellular recordings from brain slices, we show that the N-type calcium channel contributes significantly to glutamate release in the avian hippocampus. Activation of the metabotrobic gamma-aminobutyric acid (GABA)(B) receptor by the specific agonist baclofen blocks synaptic transmission. The action of baclofen was associated with a change in paired pulse facilitation indicating that it resulted from a reduction in the probability of transmitter release, In contrast, no change in paired pulse facilitation was observed following the induction of long-term depression. These results show that activation of GABA(B) receptors and long-term depression reduce transmitter release by distinct mechanisms. (C) 2000 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Establishment of long-term potentiation (LTP) at perforant path synapses is highly correlated with increased expression of Egr and AP-1 transcription factors in rat dentate gyrus granule cells. We have investigated whether increased transcription factor levels are reflected in increased transcription factor activity by assessing Egr and AP-I DNA binding activity using gel shift assays. LTP produced an increase in binding to the Egr element, which was NMDA receptor-dependent and correlated closely with our previously reported increase in Egr-1 (zif/268) protein levels. Supershift analysis confirmed involvement of Egr-1, but not Egr-2 in the DNA binding activity. AP-1 DNA binding was also rapidly elevated in parallel with protein levels, however, the peak increase in activity was delayed until 4 h, a time point when we have previously shown that only jun-D protein was elevated. These data indicate that binding of Egr-1 and AP-1 to their response elements is increased in two phases. This may result in activation of distinct banks of target genes which contribute to the establishment of persistent LTP. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The amygdala plays a major role in the acquisition and expression of fear conditioning. NMDA receptor-dependent synaptic plasticity within the basolateral amygdala has been proposed to underlie the acquisition and possible storage of fear memories. Here the properties of fast glutamatergic transmission in the lateral and central nuclei of the amygdala are presented. In the lateral amygdala, two types of neurons, interneurons and projection neurons, could be distinguished by their different firing properties. Glutamatergic inputs to interneurons activated AMPA receptors with inwardly rectifying current-voltage relations (I-Vs), whereas inputs to projection neurons activated receptors that had linear I-Vs, indicating that receptors on interneurons lack GluR2 subunits. Inputs to projection neurons formed dual component synapses with both AMPA and NMDA components, whereas at inputs to interneurons, the contribution of NMDA receptors was very small. Neurons in the central amygdala received dual component glutamatergic inputs that activated AMPA receptors with linear I-Vs. NMDA receptor-mediated EPSCs had slow decay time constants in the central nucleus. Application of NR2B selective blockers ifenprodil or CP-101,606 blocked NMDA EPSCs by 70% in the central nucleus, but only by 30% in the lateral nucleus. These data show that the distribution of glutamatergic receptors on amygdalar neurons is not uniform. In the lateral amygdala, interneurons and pyramidal neurons express AMPA receptors with different subunit compositions. Synapses in the central nucleus activate NMDA receptors that contain NR1 and NR2B subunits, whereas synapses in the lateral nucleus contain receptors with both NR2A and NR2B subunits.