104 resultados para Genetic and QTL mapping
Resumo:
Background Twin and family studies have shown that genetic effects explain a relatively high amount of the phenotypic variation in blood pressure. However, many studies have not been able to replicate findings of association between specific polymorphisms and diastolic and systolic blood pressure. Methods In a structural equation-modelling framework the authors investigated longitudinal changes in repeated measures of blood pressures in a sample of 298 like-sexed twin pairs from the population-based Swedish Twin Registry. Also examined was the association between blood pressure and polymorphisms in the angiotensin-I converting enzyme and the angiotensin 11 receptor type 1 with the 'Fulker' test Both linkage and association were tested simultaneously revealing whether the polymorphism is a Quantitative Trait Locus (QTL) or in linkage disequilibrium with the QTL. Results Genetic influences explained up to 46% of the phenotypic variance in diastolic and 63% of the phenotypic variance in systolic blood pressure. Genetic influences were stable over time and contributed up to 78% of the phenotypic correlation in both diastolic and systolic blood pressure. Non-shared environmental effects were characterised by time specific influences and little transmission from one time point to the next. There was no significant linkage and association between the polymorphisms and blood pressure. Conclusions There is a considerable genetic stability in both diastolic and systolic blood pressure for a 6-year period of time in adult life. Non-shared environmental influences have a small long-term effect Although associations with the polymorphisms could not be replicated, results should be interpreted with caution due to power considerations. (C) 2002 Lippincott Williams Wilkins.
Resumo:
Genetic research on risk of alcohol, tobacco or drug dependence must make allowance for the partial overlap of risk-factors for initiation of use, and risk-factors for dependence or other outcomes in users. Except in the extreme cases where genetic and environmental risk-factors for initiation and dependence overlap completely or are uncorrelated, there is no consensus about how best to estimate the magnitude of genetic or environmental correlations between Initiation and Dependence in twin and family data. We explore by computer simulation the biases to estimates of genetic and environmental parameters caused by model misspecification when Initiation can only be defined as a binary variable. For plausible simulated parameter values, the two-stage genetic models that we consider yield estimates of genetic and environmental variances for Dependence that, although biased, are not very discrepant from the true values. However, estimates of genetic (or environmental) correlations between Initiation and Dependence may be seriously biased, and may differ markedly under different two-stage models. Such estimates may have little credibility unless external data favor selection of one particular model. These problems can be avoided if Initiation can be assessed as a multiple-category variable (e.g. never versus early-onset versus later onset user), with at least two categories measurable in users at risk for dependence. Under these conditions, under certain distributional assumptions., recovery of simulated genetic and environmental correlations becomes possible, Illustrative application of the model to Australian twin data on smoking confirmed substantial heritability of smoking persistence (42%) with minimal overlap with genetic influences on initiation.
Resumo:
We compare Bayesian methodology utilizing free-ware BUGS (Bayesian Inference Using Gibbs Sampling) with the traditional structural equation modelling approach based on another free-ware package, Mx. Dichotomous and ordinal (three category) twin data were simulated according to different additive genetic and common environment models for phenotypic variation. Practical issues are discussed in using Gibbs sampling as implemented by BUGS to fit subject-specific Bayesian generalized linear models, where the components of variation may be estimated directly. The simulation study (based on 2000 twin pairs) indicated that there is a consistent advantage in using the Bayesian method to detect a correct model under certain specifications of additive genetics and common environmental effects. For binary data, both methods had difficulty in detecting the correct model when the additive genetic effect was low (between 10 and 20%) or of moderate range (between 20 and 40%). Furthermore, neither method could adequately detect a correct model that included a modest common environmental effect (20%) even when the additive genetic effect was large (50%). Power was significantly improved with ordinal data for most scenarios, except for the case of low heritability under a true ACE model. We illustrate and compare both methods using data from 1239 twin pairs over the age of 50 years, who were registered with the Australian National Health and Medical Research Council Twin Registry (ATR) and presented symptoms associated with osteoarthritis occurring in joints of the hand.
Resumo:
Because the determinants of anxiety and depression in late adolescence and early adulthood may differ from those in later life, we investigated the temporal stability and magnitude of genetic and environmental correlates of symptoms of anxiety and depression across the life span. Data were collected from a population-based Australian sample of 4364 complete twin pairs and 777 singletons aged 20 to 96 years who were followed-up over three studies between 1980 and 1996. Each study contained the 14-item self-report DSSI/sAD scale which was used to measure recently experienced symptoms of anxiety and depression. Symptom scores were then divided and assigned to age intervals according to each subject's age at time of participation. We fitted genetic simplex models to take into account the longitudinal nature of the data. For male anxiety and depression, the best fitting simplex models comprised a single genetic innovation at age 20 which was transmitted, and explained genetic variation in anxiety and depression at ages 30, 40, 50 and 60. Most of the lifetime genetic variation in female anxiety and depression could also be explained by innovations at age 20 which were transmitted to all other ages; however, there were also smaller age-dependent genetic innovations at 30 for anxiety and at 40 and 70 for depression. Although the genetic determinants of anxiety and depression appear relatively stable across the life-span for males and females, there is some evidence to support additional mid-life and late age gene action in females for depression. The fact that mid-life onset for anxiety occurs one decade before depression is also consistent with a causal relationship (anxiety leading to depression) between these conditions. These findings have significance for large scale depression prevention projects.
Resumo:
Current opinion contends that complex interactions between genetic and environmental factors play a role in the etiology of Parkinson's disease (PD). Cigarette smoking is thought to reduce risk of PD, and emerging evidence suggests that genetic factors may modulate smoking's effect. We used a case-only design, an approach not previously used to study gene-environment interactions in PD, specifically to study interactions between glutathione-S-transferase (GST) gene polymorphisms and smoking in relation to PD. Four-hundred PD cases (age at onset: 60.0 +/- 10.7 years) were genotyped for common polymorphisms in GSTM1, PI, T1 and Z1 using well-established methods. Smoking exposure data were collected in face-to-face interviews. The independence of the studied GST genotypes and smoking exposure was confirmed by studying 402 healthy, aged individuals. No differences were observed in the distributions of GSTM1, T1 or Z1 polymorphisms between ever-smoked and never-smoked PD cases using logistic regression (all P > 0.43). However, GSTP1 *C haplotypes were over-represented among PD cases who ever smoked (odds ratio for interaction (ORi) = 2.00 (95% Cl: 1.11-3.60, P = 0.03)). Analysis revealed that ORi between smoking and the GSTP1-114Val carrier status increased with increasing smoking dose (P = 0.02 for trend). These data suggest that one or more GSTP1 polymorphisms may interact with cigarette smoking to influence the risk for PD. (C) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background. Genetic influences have been shown to play a major role in determining the risk of alcohol dependence (AD) in both women and men; however, little attention has been directed to identifying the major sources of genetic variation in AD risk. Method. Diagnostic telephone interview data from young adult Australian twin pairs born between 1964 and 1971 were analyzed. Cox regression models were fitted to interview data from a total of 2708 complete twin pairs (690 MZ female, 485 MZ male, 500 DZ female, 384 DZ male, and 649 DZ female/male pairs). Structural equation models were fitted to determine the extent of residual genetic and environmental influences on AD risk while controlling for effects of sociodemographic and psychiatric predictors on risk. Results. Risk of AD was increased in males, in Roman Catholics, in those reporting a history of major depression, social anxiety problems, and conduct disorder, or (in females only) a history of suicide attempt and childhood sexual abuse; but was decreased in those reporting Baptist, Methodist, or Orthodox religion, in those who reported weekly church attendance, and in university-educated males. After allowing for the effects of sociodemographic and psychiatric predictors, 47 % (95 % CI 28-55) of the residual variance in alcoholism risk was attributable to additive genetic effects, 0 % (95 % CI 0-14) to shared environmental factors, and 53 % (95 % CI 45-63) to non-shared environmental influences. Conclusions. Controlling for other risk factors, substantial residual heritability of AD was observed, suggesting that psychiatric and other risk factors play a minor role in the inheritance of AD.
Resumo:
Remote sensing, as a direct adjunct to field, lithologic and structural mapping, and more recently, GIS have played an important role in the study of mineralized areas. A review on the application of remote sensing in mineral resource mapping is attempted here. It involves understanding the application of remote sensing in lithologic, structural and alteration mapping. Remote sensing becomes an important tool for locating mineral deposits, in its own right, when the primary and secondary processes of mineralization result in the formation of spectral anomalies. Reconnaissance lithologic mapping is usually the first step of mineral resource mapping. This is complimented with structural mapping, as mineral deposits usually occur along or adjacent to geologic structures, and alteration mapping, as mineral deposits are commonly associated with hydrothermal alteration of the surrounding rocks. In addition to these, understanding the use of hyperspectral remote sensing is crucial as hyperspectral data can help identify and thematically map regions of exploration interest by using the distinct absorption features of most minerals. Finally coming to the exploration stage, GIS forms the perfect tool in integrating and analyzing various georeferenced geoscience data in selecting the best sites of mineral deposits or rather good candidates for further exploration.
Resumo:
New tools derived from advances in molecular biology have not been widely adopted in plant breeding for complex traits because of the inability to connect information at gene level to the phenotype in a manner that is useful for selection. In this study, we explored whether physiological dissection and integrative modelling of complex traits could link phenotype complexity to underlying genetic systems in a way that enhanced the power of molecular breeding strategies. A crop and breeding system simulation study on sorghum, which involved variation in 4 key adaptive traits-phenology, osmotic adjustment, transpiration efficiency, stay-green-and a broad range of production environments in north-eastern Australia, was used. The full matrix of simulated phenotypes, which consisted of 547 location-season combinations and 4235 genotypic expression states, was analysed for genetic and environmental effects. The analysis was conducted in stages assuming gradually increased understanding of gene-to-phenotype relationships, which would arise from physiological dissection and modelling. It was found that environmental characterisation and physiological knowledge helped to explain and unravel gene and environment context dependencies in the data. Based on the analyses of gene effects, a range of marker-assisted selection breeding strategies was simulated. It was shown that the inclusion of knowledge resulting from trait physiology and modelling generated an enhanced rate of yield advance over cycles of selection. This occurred because the knowledge associated with component trait physiology and extrapolation to the target population of environments by modelling removed confounding effects associated with environment and gene context dependencies for the markers used. Developing and implementing this gene-to-phenotype capability in crop improvement requires enhanced attention to phenotyping, ecophysiological modelling, and validation studies to test the stability of candidate genetic regions.
Resumo:
Sustainable management of coastal and coral reef environments requires regular collection of accurate information on recognized ecosystem health indicators. Satellite image data and derived maps of water column and substrate biophysical properties provide an opportunity to develop baseline mapping and monitoring programs for coastal and coral reef ecosystem health indicators. A significant challenge for satellite image data in coastal and coral reef water bodies is the mixture of both clear and turbid waters. A new approach is presented in this paper to enable production of water quality and substrate cover type maps, linked to a field based coastal ecosystem health indicator monitoring program, for use in turbid to clear coastal and coral reef waters. An optimized optical domain method was applied to map selected water quality (Secchi depth, Kd PAR, tripton, CDOM) and substrate cover type (seagrass, algae, sand) parameters. The approach is demonstrated using commercially available Landsat 7 Enhanced Thematic Mapper image data over a coastal embayment exhibiting the range of substrate cover types and water quality conditions commonly found in sub-tropical and tropical coastal environments. Spatially extensive and quantitative maps of selected water quality and substrate cover parameters were produced for the study site. These map products were refined by interactions with management agencies to suit the information requirements of their monitoring and management programs. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This study examined the genetic and environmental relationships among 5 academic achievement skills of a standardized test of academic achievement, the Queensland Core Skills Test (QCST; Queensland Studies Authority, 2003a). QCST participants included 182 monozygotic pairs and 208 dizygotic pairs (mean 17 years +/- 0.4 standard deviation). IQ data were included in the analysis to correct for ascertainment bias. A genetic general factor explained virtually all genetic variance in the component academic skills scores, and accounted for 32% to 73% of their phenotypic variances. It also explained 56% and 42% of variation in Verbal IQ and Performance IQ respectively, suggesting that this factor is genetic g. Modest specific genetic effects were evident for achievement in mathematical problem solving and written expression. A single common factor adequately explained common environmental effects, which were also modest, and possibly due to assortative mating. The results suggest that general academic ability, derived from genetic influences and to a lesser extent common environmental influences, is the primary source of variation in component skills of the QCST.
Resumo:
First, this study examined genetic and environmental sources of variation in performance on a standardised test of academic achievement, the Queensland Core Skills Test (QCST) (Queensland Studies Authority, 2003a). Second, it assessed the genetic correlation among the QCST score and Verbal and Performance IQ measures using the Multidimensional Aptitude Battery (MAB), [Jackson, D. N. (1984) Multidimensional Aptitude Battery manual. Port Huron, MI:Research Psychologist Press, Inc.]. Participants were 256 monozygotic twin pairs and 326 dizygotic twin pairs aged from 15 to 18 years (mean 17 years +/- 0.4 [SD]) when achievement tested, and from 15 to 22 years (mean 16 years +/- 0.4 [SD]) when IQ tested. Univariate analysis indicated a heritability for the QCST of 0.72. Adjustment to this estimate due to truncate selection (downward adjustment) and positive phenotypic assortative mating (upward adjustment) suggested a heritability of 0.76 The phenotypic (0.81) and genetic (0.91) correlations between the QCST and Verbal IQ (VIQ) were significantly stronger than the phenotypic (0.57) and genetic (0.64) correlations between the QCST and Performance IQ (PIQ). The findings suggest that individual variation in QCST performance is largely due to genetic factors and that common environmental effects may be substantially accounted for by phenotypic assortative mating. Covariance between academic achievement on the QCST and psychometric IQ (particularly VIQ) is to a large extent due to common genetic influences.
Mapping olive varieties and within-field spatial variability using high resolution quickbird imagery