163 resultados para Genetic Risk
Resumo:
Aim To evaluate whether the T1D susceptibility locus on chromosome 16q contributes to the genetic susceptibility to T1D in Russian patients. Method Thirteen microsatellite markers, spanning a 47-centimorgan genomic region on 16q22-q24 were evaluated for linkage to T1D in 98 Russian multiplex families. Multipoint logarithm of odds (LOD) ratio (MLS) and nonparametric LOD (NPL) values were computed for each marker, using GENEHUNTER 2.1 software. Four microsatellites (D16S422, D16S504, D16S3037, and D16S3098) and 6 biallelic markers in 2 positional candidate genes, ICSBP1 and NQO1, were additionally tested for association with T1D in 114 simplex families, using transmission disequilibrium test (TDT). Results A peak of linkage (MLS = 1.35, NPL = 0.91) was shown for marker D16S750, but this was not significant (P = 0.18). The subsequent linkage analysis in the subset of 46 multiplex families carrying a common risk HLA-DR4 haplotype increased peak MLS and NPL values to 1.77 and 1.22, respectively, but showed no significant linkage (P = 0.11) to T1D in the 16q22-q24 genomic region. TDT analysis failed to find significant association between these markers and disease, even after the conditioning for the predisposing HLA-DR4 haplotype. Conclusion Our results did not support the evidence for the susceptibility locus to T1D on chromosome 16q22-24 in the Russian family data set. The lack of association could reflect genetic heterogeneity of type 1 diabetes in diverse ethnic groups.
Resumo:
The human melanocortin-1 receptor gene (MC1R) encodes a G-protein coupled receptor that is primarily expressed on melanocytes, where it plays a key role in pigmentation regulation. Variant alleles are associated with red hair colour and fair skin, known as the RHC phenotype, as well as skin cancer risk. The R151C, R160W and D294H alleles, designated 'R', are strongly associated with the RHC phenotype and have been proposed to result in loss of function receptors due to impaired G-protein coupling. We recently provided evidence that the R151C and R160W variants can efficiently couple to G-proteins in response to alpha-melanocyte stimulating hormone. The possibility that altered cellular localization of the R151C and R160W variant receptors could underlie their association with RHC was therefore considered. Using immunofluorescence and ligand binding studies, we found that melanocytic cells exogenously or endogenously expressing MC1R show strong surface localization of the wild-type and D294H alleles but markedly reduced cell surface expression of the R151C and R160W receptors. In additional exogenous expression studies, the R variant D84E and the rare I155T variant, also demonstrated a significant reduction in plasma membrane receptor numbers. The V60L, V92M and R163Q weakly associated RHC alleles, designated 'r', were expressed with normal or intermediate cell surface receptor levels. These results indicate that reduced receptor coupling activity may not be the only contributing factor to the genetic association between the MC1R variants and the RHC phenotype, with MC1R polymorphisms now linked to a change in receptor localization.
Resumo:
Objective: The Ile462Val substitution in the cytochrome P450 1A1 gene (CYP1A1) results in increased enzymatic activity. Preliminary data suggesting a link between this polymorphism and lung cancer risk in Caucasians are inconsistent, reflecting small sample sizes and the relatively low frequency of the variant. Methods: The data set consisted of 1050 primary non-small cell lung cancer cases and 581 controls, a large homogenous population designed specifically to address previous inconsistencies. Patients were genotyped using a PCR-RFLP technique. Results: Carriers of the valine allele, CYP1A1*2C, (Ile/Val or Val/Val genotypes) were significantly over-represented in non-small cell lung cancer compared to controls (OR=1.9; 95% CI=1.2-2.9; p=0.005) when adjusted for confounders, particularly in women (OR=4.6; 95% CI=1.7-12.4; p=0.003). The valine variant was statistically significantly over-represented in cases of lung cancer younger than the median age (64 years) (OR=2.5; 95% CI=1.3-4.8; p=0.005) and cases with less than the median cumulative tobacco-smoke exposure (46 pack-years) (OR=2.4; 95% CI=1.3-4.7; p=0.007). Conclusions: These new data establish an association between the CYP1A1 Ile462Val polymorphism and the risk of developing non-small cell lung cancer, especially among women.
Resumo:
Genetic screening of women from multiple-case breast cancer families and other research-based endeavors have identified an extensive collection of germline variations of BRCA1 and BRCA2 that can be classified as deleterious and have clinical relevance. For some variants, such as those in the conserved intronic splice site regions which are highly likely to alter splicing, it is not possible to classify them based on the identified DNA sequence variation alone. We studied 11 multiple-case breast cancer families carrying seven distinct splice site region genetic alterations in BRCA1 or BRCA2 (BRCA1, c.IVS6-2delA, c.IVS9-2A>C, c.IVS4-1G>T, c.IVS20+1G>A and BRCA2, c.IVS17-1G>C, c.IVS20+1G>A, c.IVS7-1G>A) and applied SpliceSiteFinder to predict possible changes in efficiency of splice donor and acceptor sites, characterized the transcripts, and estimated the average age-specific cumulative risk (penetrance) using a modified segregation analysis. SpliceSiteFinder predicted and we identified transcipts that illustrated that all variants caused exon skipping, and all but two led to frameshifts. The risks of breast cancer to age 70 yrs, averaged over all variants, over BRCA1 variants alone, and over BRCA2 variants alone, were 73% (95% confidence interval 47-93), 64% (95%CI 28-96) and 79% (95%CI 48-98) respectively (all P
Resumo:
Caucasian renal transplant recipients from Queensland, Australia have the highest non-melanoma skin cancer (NMSC) risk worldwide. Although ultraviolet light (UVR) exposure is critical, genetic factors also appear important. We and others have shown that polymorphism in the glutathione S-transferases (GST) is associated with NMSC in UK recipients. However, the effect of high UVR exposure and differences in immunosuppressive regimen on these associations is unknown. In this study, we examined allelism in GSTM1, GSTM3, GSTT1 and GSTP1 in 361 Queensland renal transplant recipients. Data on squamous (SCC) and basal cell carcinoma (BCC), UVR/tobacco exposure and genotype were obtained. Associations with both NMSC risk and numbers were examined using logistic and negative binomial regression, respectively. In the total group, GSTM1 AB [P = 0.049, rate ratio (RR) = 0.23] and GSTM3 AA (P = 0.015, RR = 0.50) were associated with fewer SCC. Recipients were then stratified by prednisolone dose (less than or equal to7 versus >7 mg/day). In the low-dose group, GSTT1 null (P = 0.006, RR = 0.20) and GSTP1 Val/Val (P = 0.021, RR = 0.20) were associated with SCC numbers. In contrast, in the high-dose group, GSTM1 AB (P = 0.009, RR = 0.05), GSTM3 AB (P = 0.042, RR = 2.29) and BB (P = 0.014, RR = 5.31) and GSTP1 Val/Val (P = 0.036, RR = 2.98) were associated with SCC numbers. GSTM1 AB (P = 0.016) and GSTP1 Val/Val (P = 0.046) were also associated with fewer BCC in this group. GSTP1 associations were strongest in recipients with lower UVR/tobacco exposure. The data confirm our UK findings, suggesting that protection against UVR-induced oxidative stress is important in NMSC development in recipients, but that this effect depends on the immunosuppressant regimen.
Resumo:
Prenatal exposure to testosterone has been hypothesised to effect lateralization by influencing cell death in the foetal brain. Testosterone binds to the X chromosome linked androgen receptor, which contains a polymorphic polyglutamine CAG repeat, the length of which is positively correlated with testosterone levels in males, and negatively correlated in females. To determine whether the length of the androgen receptor mediates the effects of testosterone on laterality, we examined the association between the number of CAG repeats in the androgen receptor gene and handedness for writing. Association was tested by adding regression terms for the length of the androgen receptor alleles to a multi-factorial-threshold model of liability to left-handedness. In females we found the risk of left-handedness was greater in those with a greater number of repeats (p=0.04), this finding was replicated in a second independent sample of female twins (p=0.014). The length of the androgen receptor explained 6% of the total variance and 24% of the genetic variance in females. In males the risk of left-handedness was greater in those with fewer repeats (p=0.02), with variation in receptor length explaining 10% of the total variance and 24% of the genetic variance. Thus, consistent with Witelson's theory of testosterone action, in all three samples the likelihood of left handedness increased in those individuals with variants of the androgen receptor associated with lower testosterone levels.
Resumo:
Predictive genetic testing for serious, mature-onset genetic illness represents a unique context in health decision making. This article presents findings from an exploratory qualitative Australian-based study into the decision making of individuals at risk for Huntington's disease (HD) with regard to predictive genetic testing. Sixteen in-depth interviews were conducted with a range of at-risk individuals. Data analysis revealed four discrete decision-making positions rather than a 'to test' or not to test' dichotomy. A conceptual dimension of (non-)openness and (non-)engagement characterized the various decisions. Processes of decision making and a concept of 'test readiness' were identified. Findings from this research, while not generalizable, are discussed in relation to theoretical frameworks and stage models of health decision making, as well as possible clinical implications.
Resumo:
Nothofagus moorei (F. Muell.) Krasser has a disjunct and narrow distribution in south-eastern Australian cool temperate rainforest. To assess the conservation-genetic priorities for this species, the genetic diversity of 20 populations sampled from the largest remnant patches at northern and southern distributional extremes, the McPherson and Barrington ranges (a total of 146 individuals), was investigated by using inter simple sequence repeats (ISSR). Regeneration in northern regions of N. moorei has been documented to be predominantly by vegetative means, but our results indicate little evidence of clonality outside the multi-stemmed rings of trees. In addition, genetic diversity was considerably higher in the northern (McPherson, h = 0.1613) than in the southern range (Barrington, h = 0.1159), and genetic differentiation was significantly positively correlated with geographic distance in the former region, but not the latter. Total intraspecific variation was moderate, as measured by Shannon's diversity index, I = 0.2719, and Nei's gene diversity, h = 0.1672, and is considered at the high end of spectrum for estimates of narrow endemic species. An analysis of molecular variation indicated that the majority of genetic variation is partitioned among individuals within population (60%; P < 0.001), rather than among populations within regions (10%; P < 0.001). However, a large and significant component of the measured diversity was partitioned between northern and southern regions (29%; P < 0.001). Several hypotheses are outlined to explain these differences and management implications are discussed. However, given the narrow range, poor dispersal mechanism and restriction to cool temperate rainforest, the continued existence of N. moorei is most threatened by environmental instability and habitat loss resulting from global climate change. In this context the northern regions of the species are most at risk and extinction of such populations would lead to a significant loss of genetic variation for the species as a whole.
Resumo:
Background. We examined whether there are genetic influences on nicotine withdrawal. and whether there are genetic factors specific to nicotine withdrawal, after controlling for factors responsible for risk of progression beyond experimentation with cigarettes and for quantity smoked (average number of cigarettes per day at peak lifetime use). Method. Epidemiologic and genetic analyses were conducted using telephone diagnostic interview data from Young adult Australian twins reporting any cigarette use (3026 women. 2553 men: mean age 30 years). Results. Genetic analysis of the eight symptoms of DSM-IV nicotine withdrawal suggests heritability is intermediate for most symptoms (26-43%). and Similar in men and women. The exceptions were depressed mood upon withdrawal. which had stronger additive genetic influences in men (53%) compared to worrien (29%). and decreased heart rate. which had low heritability (9%). Although prevalence rates were substantlally lower for DSM-IV nicotine withdrawal syndrome (15-9%), which requires impairment. than for the DSM-IV nicotine dependence withdrawal criterion (43.6%), heritability was similar for both measures: as high as 47%. Genetic modeling of smoking more than 1 or 2 cigarettes lifetime ('progression'). qualtity smoked and nicotine withdrawal found significant genetic overlap across all three components of nicotine use/dependence (genetic correlations = 0.53-0.76). Controlling for factors associated with risk of cigarette smoking beyond experimentation and quantity smoked, evidence for genetic influences specific to nicotine withdrawal (up to 23% of total variance) remained. Conclusions. Our results suggest that at least some individuals become 'hooked' or progress in the smoking habit, in part, because of it vulnerability to nicotine withdrawal.
Resumo:
The natural history of the development of epithelial ovarian cancer remains obscure and no effective screening test exists. In several human malignancies progression from benign to invasive tumour occurs, but this sequence has not been established for epithelial ovarian cancer. We have reviewed epidemiological, histopathological and molecular studies of benign epithelial ovarian tumours to assess the evidence for and against such a progression in ovarian cancer. These data suggest that a diagnosis of a benign ovarian cyst or tumour is associated with an increased risk of ovarian cancer later in life. Current evidence also suggests that benign serous tumours can progress to low-grade serous cancer and that benign mucinous tumours can progress to mucinous cancer. The more common high-grade serous ovarian cancers are likely to arise de novo.
Resumo:
Background: Women who have germline mutations in the BRCA1 gene are at substantially increased lifetime risk of developing breast and ovarian cancer but are otherwise normal. Currently. early age of onset of cancer and a strong family history are relied upon as the chief clues as to who should be offered genetic testing. Certain morphologic and immunohistochemical features are overrepresented in BRCA1-associated breast cancers but these differences have not been incorporated into the current selection criteria for genetic testing. Design: Each of the 4 pathologists studied 30 known cases of BRCA1- and BRCA2-associated breast cancer from kConFab families. After reviewing the literature, we agreed on a semiquantitative scoring system for estimating the chances of presence of an underlying BRCA1 mutation, based on the number of the reported prototypic features present. After a time lag of 12 months, we each examined a series of 62 deidentified cases of breast cancer, inclusive of cases of BRCA1-associated breast cancer and controls. The controls included cases of BRCA2-associated breast cancer and sporadic cases. Results: Our predictions had a sensitivity of 92%, specificity of 86%, positive predictive value of 61%, and negative predictive value of 98%. For comparison the sensitivity of currently used selection criteria are in the range of 25% to 30%. Conclusion: The inclusion of morphologic and immunohistochemical features of breast cancers in algorithms to predict the likelihood of presence of germline mutations in the BRCA1 gene improves the accuracy of the selection process.
Resumo:
The consensus from published studies is that plasma lipids are each influenced by genetic factors, and that this contributes to genetic variation in risk of cardiovascular disease. Heritability estimates for lipids and lipoproteins are in the range .48 to .87, when measured once per study participant. However, this ignores the confounding effects of biological variation measurement error and ageing, and a truer assessment of genetic effects on cardiovascular risk may be obtained from analysis of longitudinal twin or family data. We have analyzed information on plasma high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol, and triglycerides, from 415 adult twins who provided blood on two to five occasions over 10 to 17 years. Multivariate modeling of genetic and environmental contributions to variation within and across occasions was used to assess the extent to which genetic and environmental factors have long-term effects on plasma lipids. Results indicated that more than one genetic factor influenced HDL and LDL components of cholesterol, and triglycerides over time in all studies. Nonshared environmental factors did not have significant long-term effects except for HDL. We conclude that when heritability of lipid risk factors is estimated on only one occasion, the existence of biological variation and measurement errors leads to underestimation of the importance of genetic factors as a cause of variation in long-term risk within the population. In addition our data suggest that different genes may affect the risk profile at different ages.
Resumo:
The MFG test is a family-based association test that detects genetic effects contributing to disease in offspring, including offspring allelic effects, maternal allelic effects and MFG incompatibility effects. Like many other family-based association tests, it assumes that the offspring survival and the offspring-parent genotypes are conditionally independent provided the offspring is affected. However, when the putative disease-increasing locus can affect another competing phenotype, for example, offspring viability, the conditional independence assumption fails and these tests could lead to incorrect conclusions regarding the role of the gene in disease. We propose the v-MFG test to adjust for the genetic effects on one phenotype, e.g., viability, when testing the effects of that locus on another phenotype, e.g., disease. Using genotype data from nuclear families containing parents and at least one affected offspring, the v-MFG test models the distribution of family genotypes conditional on offspring phenotypes. It simultaneously estimates genetic effects on two phenotypes, viability and disease. Simulations show that the v-MFG test produces accurate genetic effect estimates on disease as well as on viability under several different scenarios. It generates accurate type-I error rates and provides adequate power with moderate sample sizes to detect genetic effects on disease risk when viability is reduced. We demonstrate the v-MFG test with HLA-DRB1 data from study participants with rheumatoid arthritis (RA) and their parents, we show that the v-MFG test successfully detects an MFG incompatibility effect on RA while simultaneously adjusting for a possible viability loss.
Resumo:
We investigated the hypothesis that alcoholism risk may be mediated by genes for neurotransmitters (dopamine, serotonin, opioid, GABAA and glutamate) associated with the dopamine reward system, and with genes involved in ethanol metabolism and fibrogenesis (ADH2, ADH3, ALDH2, CYP2E1, COL1A2, and ApoE). DNA was extracted from brain tissue collected at autopsy from pathologically characterised alcoholics and controls. PCR-based studies showed that alcoholism was associated with polymorphisms of the dopamine D2 receptor (DRD2) Taq1 B (p 0.005) and the GABAA 2 subunit C1412T (p 0.007) genes but not with the glutamate receptor subunit gene NR2B (366C/G), the serotonin transporter gene (5HTTL-PR), the dopamine transporter gene DAT1(SLC6A3), the Mu opioid receptor gene MOR1 (A118G and C1031G), the dopamine D2 receptor gene DRD2 Taq1 A or the GABAA 1(A15G), 6(T1519C) and 2(G3145A) subunit genes. The glial glutamate transporter gene EAAT2 polymorphism G603A was associated with alcoholic cirrhosis (p 0.024). The genotype for the most active alcohol dehydrogenase ADH3 was associated with a lower risk of alcoholism (p 0.027) and was less prevalent in alcoholics with DRD2 Taq1 A2/A2 (p 0.007), Taq1 B2/B2 (p 0.038) and GABAA-2 1412C/C (p 0.005) and EAAT2 603G/A (p 0.020) genotypes. Combined genotypes of DRD2 Taq1 A and B, GABAA-2, and EAAT2 G603A polymorphisms suggested a concerted influence of dopamine, GABAA and glutamatergic neurotransmitters in the predisposition to alcoholism.