75 resultados para GEOGRAPHIC STOMATITIS
Resumo:
The scleractinian coral species, Seriatopora hystrix and Acropora longicyathus, are widely distributed throughout the latitudinal range of the tropical west Pacific. These 2 coral species live in a mutually beneficial relation with symbiotic dinoflagellates (zooxanthellae), which are passed to their progeny by vertical transmission (zooxanthellate eggs or larvae) and horizontal transmission (eggs or larvae that acquire symbionts from the environment), respectively. For S. hystrix, vertical transmission might create biogeographically isolated and genetically differentiated symbiont populations because the extent of its larval migration is known to be limited. On the other hand, horizontal transmission in corals such as A. longicyathus may result in genetically connected symbiont populations, especially if its zooxanthellae taxa are widely distributed. To examine these hypotheses, symbionts were collected from colonies of S. hystrix and A. longicyathus living in the Great Barrier Reef (Australia), South China Sea (Malaysia) and East China Sea (Ryukyus Archipelago, Japan), and were examined using restriction fragment length polymorphism and sequence analysis of large and small subunit rRNA genes. Phylogenetic analysis assigned the symbionts to 1 of 3 taxonomically distinct groups, known as clades. Symbionts from Australian and Japanese S. hystrix were placed in Clade C, and Malaysian S. hystrix symbionts in the newly described Clade D. Seven of 11 Australian and all Japanese and Malaysian colonies of A. longicyathus had symbiotic dinoflagellates that also grouped with Clade C, but symbionts from the remaining Australian colonies of A. longicyathus grouped with Clade A. Analysis of molecular variance of Clade C symbionts found significant genetic variation in 1 or more geographic groups (69.8%) and to a lesser extent among populations within geographic regions (13.6%). All populations of Clade C symbionts from S. hystrix were genetically differentiated according to geographic region. Although Clade C symbionts of A. longicyathus from Japan resolved into a distinct geographic group, those from Australia and Malaysia did not and were genetically connected. We propose that these patterns of genetic connectivity correlate with differences in the dispersal range of the coral or symbiont propagules and are associated with their respective modes of symbiont transmission.
Resumo:
Several small isolates of rainforest situated on the central eastern coast of Australia are home to a rich herpetofauna, including four endemic species of leaftail geckos (Phyllurus spp.) and two skinks (Eulamprus spp.). To examine the extent and geographic pattern of historical subdivision among isolates, we assayed mtDNA variation in two species endemic to rainforests of this region (Phyllurus ossa and Eulamprus amplus) and, for comparison, a more widespread and less specialised lizard, Carlia rhomboidalis. There is a clear genetic signature of historical changes in population size and distribution in P. ossa that is consistent with Pleistocene (or earlier) rainforest contraction and subsequent expansion. Although more pronounced in the gecko, phylogeographic structure was congruent between E. amplus and P. ossa. In contrast to the saxicolous, rainforest-restricted P. ossa and E. amplus, the rainforest-generalist species, C. rhomboidalis, does not display strong geographic population structure. The differences in genetic population structure exhibited by the three species are consistent with species-specific differences in ecology.
Resumo:
While riparian vegetation can play a major role in protecting land, water and natural habitat in catchments, there are high costs associated with tree planting and establishment and in diverting land from cropping. The distribution of costs and benefits of riparian revegetation creates conflicts in the objectives of various stakeholder groups. Multicriteria analysis provides an appropriate tool to evaluate alternative riparian revegetation options, and to accommodate the conflicting views of various stakeholder groups. This paper discusses an application of multicriteria analysis in an evaluation of riparian revegetation policy options for Scheu Creek, a small sub-catchment in the Johnstone River catchment in north Queensland, Australia. Clear differences are found in the rankings of revegetation options for different stakeholder groups with respect to environmental, social and economic impacts. Implementation of a revegetation option will involve considerable cost for landholders for the benefits of society. Queensland legislation does not provide a means to require farmers to implement riparian revegetation, hence the need for subsidies, tau incentives and moral suasion. (C) 2001 Academic Press.
Resumo:
We investigated the phylogeography of two closely related Australian frog species from open forest habitats, Limnodynastes tasmaniensis and L. peronii, using mitochondrial ND4 sequence data. Comparison of our results with previous work on Litoria fallax allowed us to test the generality of phylogeographic patterns among non-rainforest anurans along the east coast of Australia. In general, there was no strong evidence for congruence between overall patterns of genetic structure in the three species. However, phylogenetic breaks congruent with the position of the Burdekin Gap were detected at some level in all species. As previously noted for closed forest taxa, this area of dry habitat appears to have been an important influence on the evolution of several open forest taxa. There were broad geographic similarities in the phylogenetic structuring of southern populations of L. peronii and L. tasmaniensis. Contrarily, although the McPherson Range has previously been noted to coincide geographically with a major mtDNA phylogenetic break in Litoria fallax this pattern is not apparent in L. peronii or L. tasmaniensis. It appears that major phylogeographic splits within L. peronii and L. tasmaniensis may predate the Quaternary. We conclude that phylogeographies of open forest frogs are complex and more difficult to predict than for rainforest taxa, mainly due to an absence of palaeomodels for historical distributions of non-rainforest habitats. (C) 2001 The Linnean Society of London.
A high efficient and consistent method for harvesting large volumes of high-titre lentiviral vectors
Resumo:
Lentiviral vectors pseudotyped with vesicular stomatitis virus glycoprotein (VSV-G) are emerging as the vectors of choice for in vitro and in vivo gene therapy studies. However, the current method for harvesting lentivectors relies upon ultracentrifugation at 50 000 g for 2 h. At this ultra-high speed, rotors currently in use generally have small volume capacity. Therefore, preparations of large volumes of high-titre vectors are time-consuming and laborious to perform. In the present study, viral vector supernatant harvests from vector-producing cells (VPCs) were pre-treated with various amounts of poly-L-lysine (PLL) and concentrated by low speed centrifugation. Optimal conditions were established when 0.005% of PLL (w/v) was added to vector supernatant harvests, followed by incubation for 30 min and centrifugation at 10 000 g for 2 h at 4 degreesC. Direct comparison with ultracentrifugation demonstrated that the new method consistently produced larger volumes (6 ml) of high-titre viral vector at 1 x 10(8) transduction unit (TU)/ml (from about 3000 ml of supernatant) in one round of concentration. Electron microscopic analysis showed that PLL/viral vector formed complexes, which probably facilitated easy precipitation at low-speed concentration (10 000 g), a speed which does not usually precipitate viral particles efficiently. Transfection of several cell lines in vitro and transduction in vivo in the liver with the lentivector/PLL complexes demonstrated efficient gene transfer without any significant signs of toxicity. These results suggest that the new method provides a convenient means for harvesting large volumes of high-titre lentivectors, facilitate gene therapy experiments in large animal or human gene therapy trials, in which large amounts of lentiviral vectors are a prerequisite.
Resumo:
Short-nosed bandicoots, Isoodon, have undergone marked range contractions since European colonisation of Australia and are currently divided into many subspecies, the validity of which is debated. Discriminant function analysis of morphology and a phylogeny of Isoodon based on mtDNA control region sequences indicate a clear split between two of the three recognised species, I. macrourus and I. obesulus/auratus. However, while all previously recognised taxa within the I. obesulus/auratus group are morphologically distinct, I. auratus and I. obesulus are not phylogenetically distinct for mtDNA. The genetic divergence between I. obesulus and I. auratus (2.6%) is similar to that found among geographic isolates of the former (I. o. obesulus and I. o. peninsulae: 2.7%). Further, the divergence between geographically close populations of two different species (I. o. obesulus from Western Australia and I. a. barrowensis: 1.2%) is smaller than that among subspecies within I. auratus (I. a. barrowensis and I. auratus from northern Western Australia: 1.7%). A newly discovered population of Isoodon in the Lamb Range, far north Queensland, sympatric with a population of I. m. torosus, is shown to represent a range extension of I. o. peninsulae (350 km). It seems plausible that what is currently considered as two species, I. obesulus and I. auratus, was once one continuous species now represented by isolated populations that have diverged morphologically as a consequence of adaptation to the diverse environments that occur throughout their range. The taxonomy of these populations is discussed in relation to their morphological distinctiveness and genetic similarity.
Resumo:
Background: The International Child Care Practices Study (ICCPS) has collected descriptive data from 21 centres in 17 countries. In this report, data are presented on the infant sleeping environment with the main focus being sudden infant death syndrome (SIDS) risk factors (bedsharing and infant using a pillow) and protective factors (infant sharing a room with adult) that are not yet well established in the literature. Methods: Using a standardised protocol, parents of infants were surveyed at birth by interview and at 3 months of age mainly by postal questionnaire. Centres were grouped according to geographic location. Also indicated was the level of SIDS awareness in the community, i.e. whether any campaigns or messages to “reduce the risks of SIDS” were available at the time of the survey. Results: Birth interview data were available for 5488 individual families and 4656 (85%) returned questionnaires at 3 months. Rates of bedsharing varied considerably (2–88%) and it appeared to be more common in the samples with a lower awareness of SIDS, but not necessarily a high SIDS rate. Countries with higher rates of bedsharing appeared to have a greater proportion of infants bedsharing for a longer duration (>5 h). Rates of room sharing varied (58–100%) with some of the lowest rates noted in centres with a higher awareness of SIDS. Rates of pillow use ranged from 4% to 95%. Conclusions: It is likely that methods of bedsharing differ cross-culturally, and although further details were sought on different bedsharing practices, it was not possible to build up a composite picture of “typical” bedsharing practices in these different communities. These data highlight interesting patterns in child care in these diverse populations. Although these results should not be used to imply that any particular child care practice either increases or decreases the risk of SIDS, these findings should help to inject caution into the process of developing SIDS prevention campaigns for non-Western cultures.
Resumo:
The plasma membrane of differentiated skeletal muscle fibers comprises the sarcolemma, the transverse (T) tubule network, and the neuromuscular and muscle-tendon junctions. We analyzed the organization of these domains in relation to defined surface markers, beta -dystroglycan, dystrophin, and caveolin-3, These markers were shown to exhibit highly organized arrays along the length of the fiber. Caveolin-3 and beta -dystroglycan/dystrophin showed distinct, but to some extent overlapping, labeling patterns and both markers left transverse tubule openings clear. This labeling pattern revealed microdomains over the entire plasma membrane with the exception of the neuromuscular and muscle-tendon junctions which formed distinct demarcated macrodomains. Our results suggest that the entire plasma membrane of mature muscle comprises a mosaic of T tubule domains together with sareolemmal caveolae and beta -dystroglycan domains. The domains identified with these markers were examined with respect to targeting of viral proteins and other expressed domain-specific markers, We found that each marker protein was targeted to distinct microdomains, The macrodomains were intensely labeled with all our markers. Replacing the cytoplasmic tail of the vesicular stomatitis virus glycoprotein with that of CD4 resulted in retargeting from one domain to another. The domain-specific protein distribution at the muscle cell surface may be generated by targeting pathways requiring specific sorting information but this trafficking is different from the conventional apical-basolateral division. (C) 2001 Academic Press.
Resumo:
The green macroalgal species Caulerpa taxifolia is indigenous to tropical/subtropical Australia, ranging as far south as 28degrees and 29degrees 15' S on the Australian mainland east and west coasts, respectively. The origin of disjunct populations of the species, discovered in 2000 on the Australian mainland east coast at localities to 35degrees S remains unknown, variously attributed to introduced exotic strains or range extensions from other eastern Australian populations. Some naturally occurring Australian populations of C. taxifolia are similar to Mediterranean C. taxifolia. In Australia, large broad forms of the species, which have been known in the region since 1860, grow luxuriantly in sheltered seagrass meadows, with some of these populations tolerating minimum surface seawater temperatures in winter of 12.5 to 14.5degreesC. Accordingly, the contention that the Mediterranean has been invaded by a genetically-modified, large, cold-adapted strain of C. taxifolia may be incorrect. It is crucial that genetic markers (DNA fingerprinting, microsatellites) sensitive at the population level are used to accurately determine the genetic relatedness of C. taxifolia populations.
Resumo:
The virtual (or minimum) height of the F-region (h'F), recorded over a number of solar cycles for I I equatorial and mid-latitude ionosonde stations, was used to deduce the hemispheric (i.e. southern or northern hemisphere) character of equatorial stations. The semi-annual median monthly height (h'F) variations consist of two components: major local summer maximum and winter sub-maximum (about 5 percent of the summer maximum). This hemispheric pattern was most consistently observed for equatorial stations (within 5degrees of the geomagnetic equator) in a period centred on the local midnight (21-03 LT) but was also present, to a lesser extent, at mid-latitude stations and at other time intervals. It is evident that the physical parameter h'F defines the hemispheric character of an equatorial station which has different (sometimes opposite) geographic and geomagnetic latitudes. There is a sharp transition in the latitudinal character of the stations on both sides of the equator leading to hypothesis that the equal maxima in h'F in December and June solstices are observed at a near-equator position labelled as ionosonde deduced equator (IDE). Such a signature was observed for an American equatorial (both geographic and geomagnetic) station Talara (Peru) which is an experimental support of the hypothesis. The IDE can be another useful parameter characterising the equatorial ionosphere. This finding reveals a new application of the standard ionosonde data in defining the geophysical character of equatorial stations, being an important contribution to space climatology. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Ixodes holocyclus has a narrow, discontinuous distribution along the east coast of Australia. We studied ticks from 17 localities throughout the geographic range of this tick. The ITS2 of I. holocyclus is 793 bp long. We found nucleotide variation at eight of the 588 nucleotide positions (1.4%) that were compared for all ticks. There were eight different nucleotide sequences. Most sequences were not restricted to a particular geographic region. However, sequences F, G and H, which had an adenine at position 197, were found only in the far north of Queensland - all other ticks had a guanine at this position. The low level of intraspecific variation in this tick (0.7%) contrasts with the sequence divergence between L holocyclus and its close relative, I. cornuatus (13.1 %). These data indicate that L holocyclus does not contain cryptic species despite possible geographic isolation of some populations. We conclude that variation in the ITS2 is likely to be informative about the phylogeny of the group.
Resumo:
Allozyme analysis was used to address the question of the source of the Australian populations of the monarch butterfly Danaus plexippus (L.). The study had three major aims: (1) To compare the levels of diversity of Australian and Hawaiian populations with potential source populations. (2) To determine whether eastern and western North American populations were sufficiently divergent for the Australian populations to be aligned to a source population. (3) To compare the differentiation among regions in Australia and North America to test the prediction of greater genetic structure in Australia, as a consequence of reduced migratory behaviour. The reverse was found, with F-ST values an order of magnitude lower in Australia than in North America. Predictably, Australian and Hawaiian populations had lower allelic diversity, but unexpected higher heterozygosity values than North American populations. It was not possible to assign the Australian populations to a definitive source, although the high levels of similarity of Australian populations to each other suggest a single colonization event. The possibility that the Australian populations have not been here long enough to reach equilibrium is discussed. (C) 2002 The Linnean Society of London, Biological Journal of the Linnean Society, 2002, 75, 437-452.
Resumo:
Whereas terrestrial animal populations might show genetic connectivity within a continent, marine species, such as hermatypic corals, may have connectivity stretching to all corners of the planet. We quantified the genetic variability within and among populations of the widespread scleractinian coral, Plesiastrea versipora along the eastern Australian seaboard (4145 km) and the Ryukyu Archipelago (Japan, 681 km) using sequences of internal transcribed spacers (ITS1-2) from ribosomal DNA. Geographic patterns in genetic variability were deduced from a nested clade analysis (NCA) performed on a parsimony network haplotype. This analysis allowed the establishment of geographical associations in the distribution of haplotypes within the network cladogram, therefore allowing us to deduce phylogeographical patterns based under models of restricted gene flow, fragmentation and range expansion. No significant structure was found among Ryukyu Archipelago populations. The lack of an association between the positions of haplotypes in the cladogram with geographical location of these populations may be accounted for by a high level of gene flow of P. versipora within this region, probably due to the strong Kuroshio Current. In contrast, strong geographical associations were apparent among populations of P. versipora along the south-east coast of Australia. This pattern of restricted genetic connectivity among populations of P. versipora on the eastern seaboard of Australia seems to be associated with the present surface ocean current (the East Australian Current) on this side of the south-western Pacific Ocean.
Resumo:
Clearing of native vegetation is a major threat to biodiversity in Australia. In Queensland, clearing has resulted in extensive ecosystem transformation, especially in the more fertile parts of the landscape. In this paper, we examine Queensland, Australian and some overseas evidence of the impact of clearing and related fragmentation effects on terrestrial biota. The geographic locus is the semi-arid regions. although we recognise that coastal regions have been extensively cleared. The evidence reviewed here suggests that the reduction of remnant vegetation to 30% will result in the loss of 25-35% of vertebrate fauna, with the full impact not realised for another 50-100 years, or even longer. Less mobile, habitat specialists and rare species appear to be particularly at risk. We propose three broad principles For effective biodiversity conservation in Queensland: (i) regional native vegetation retention thresholds of 50910: (ii) regional ecosystem thresholds of 30%: and (iii) landscape design and planning principles that protect large remnants, preferably > 2000 ha, as core habitats. Under these retention thresholds. no further clearing would be permitted in the extensively cleared biogeographic regions such as Brigalow Belt and New England Tablelands. Some elements of the biota. however, will require more detailed knowledge and targeted retention and management to ensure their security. The application of resource sustainability and economic criteria outlined elsewhere in this volume should be applied to ensure that the biogeographic regions in the north and west of Queensland that are largely intact continue to provide extensive wildlife habitat.
Resumo:
Members of the Culex sitiens subgroup are important vectors of arboviruses, including Japanese encephalitis virus, Murray Valley encephalitis virus and Ross River virus. Of the eight described species, Cx. annulirostris Skuse, Cx. sitiens Wiedemann, and Cx. palpalis Taylor appear to be the most abundant and widespread throughout northern Australia and Papua New Guinea (PNG). Recent investigations using allozymes have shown this subgroup to contain cryptic species that possess overlapping adult morphology. We report the development of a polymerase chain reaction-restriction fragment-length polymorphism (PCR-RFLP) procedure that reliably separates these three species. This procedure utilizes the sequence variation in the ribosomal DNA ITS1 and demonstrates species-specific PCR-RFLP profiles from both colony and field collected material. Assessment of the consistency of this procedure was undertaken on mosquitoes sampled from a wide geographic area including Australia, PNG, and the Solomon Islands. Overlapping adult morphology was observed for Cx. annulirostris and Cx. palpalis in both northern Queensland and PNG and for all three species at one site in northwest Queensland.