79 resultados para GABA-A receptors
Resumo:
A converging body of literature over the last 50 years has implicated the amygdala in assigning emotional significance or value to sensory information. In particular, the amygdala has been shown to be an essential component of the circuitry underlying fear-related responses. Disorders in the processing of fear-related information are likely to be the underlying cause of some anxiety disorders in humans such as posttraumatic stress. The amygdaloid complex is a group of more than 10 nuclei that are located in the midtemporal lobe. These nuclei can be distinguished both on cytoarchitectonic and connectional grounds. Anatomical tract tracing studies have shown that these nuclei have extensive intranuclear and internuclear connections. The afferent and efferent connections of the amygdala have also been mapped in detail, showing that the amygdaloid complex has extensive connections with cortical and subcortical regions. Analysis of fear conditioning in rats has suggested that long-term synaptic plasticity of inputs to the amygdala underlies the acquisition and perhaps storage of the fear memory. In agreement with this proposal, synaptic plasticity has been demonstrated at synapses in the amygdala in both in vitro and in vivo studies. In this review, we examine the anatomical and physiological substrates proposed to underlie amygdala function.
Resumo:
NMDA receptors are well known to play an important role in synaptic development and plasticity. Functional NMDA receptors are heteromultimers thought to contain two NR1 subunits and two or three NR2 subunits. In central neurons, NMDA receptors at immature glutamatergic synapses contain NR2B subunits and are largely replaced by NR2A subunits with development. At mature synapses, NMDA receptors are thought to be multimers that contain either NR1/NR2A or NR1/NR2A/NR2B subunits, whereas receptors that contain only NR1/NR2B subunits are extrasynaptic. Here, we have studied the properties of NMDA receptors at glutamatergic synapses in the lateral and central amygdala. We find that NMDA receptor-mediated synaptic currents in the central amygdala in both immature and mature synapses have slow kinetics and are substantially blocked by the NR2B-selective antagonists (1S, 2S)-1-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-1-propano and ifenprodil, indicating that there is no developmental change in subunit composition. In contrast, at synapses on pyramidal neurons in the lateral amygdala, whereas NMDA EPSCs at immature synapses are slow and blocked by NR2B-selective antagonists, at mature synapses their kinetics are faster and markedly less sensitive to NR2B-selective antagonists, consistent with a change from NR2B to NR2A subunits. Using real-time PCR and Western blotting, we show that in adults the ratio of levels of NR2B to NR2A subunits is greater in the central amygdala than in the lateral amygdala. These results show that the subunit composition synaptic NMDA receptors in the lateral and central amygdala undergo distinct developmental changes.
Resumo:
The Xenopus laevis oocyte expression system was used to determine the activities of alpha-conotoxins EpI and the ribbon isomer of AuIB, on defined nicotinic acetylcholine receptors (nAChRs). In contrast to previous findings on intracardiac ganglion neurones, alpha-EpI showed no significant activity on oocyte-expressed alpha3beta4 and alpha3beta2 nAChRs but blocked the alpha7 nAChR with an IC50 value of 30 nM. A similar IC50 value (103 nM) was obtained on the alpha7/5HT(3) chimeric receptor stably expressed in mammalian cells. Ribbon AuIB maintained its selectivity on oocyte-expressed alpha3beta4 receptors but unlike in native cells, where it was 10-fold more potent than native alpha-AuIB, had 25-fold lower activity. These results indicate that as yet unidentified factors influence alpha-conotoxin pharmacology at native versus oocyte-expressed nAChRs. (C) 2003 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
alpha-Conotoxins that target the neuronal nicotinic acetylcholine receptor have a range of potential therapeutic applications and are valuable probes for examining receptor subtype selectivity. The three-dimensional structures of about half of the known neuronal specific alpha-conotoxins have now been determined and have a consensus fold containing a helical region braced by two conserved disulfide bonds. These disulfide bonds define the two-loop framework characteristic for alpha-conotoxins, CCXmCXnC, where loop 1 comprises four residues (m = 4) and loop 2 between three and seven residues (n = 3, 6 or 7). Structural studies, particularly using NMR spectroscopy have provided an insight into the role and spatial location of residues implicated in receptor binding and biological activity.
Resumo:
Duchenne muscular dystrophy (DMD) is a fatal neuromuscular condition affecting approximately one in 3500 live male births resulting from the lack of the myocyte protein dystrophin. The absence of dystrophin in cardiac myocytes is associated with calcium overload which in turn activates calcium-dependent proteolytic enzymes contributing to congestive heart failure, muscle necrosis and fibrosis. To date, the basis for the calcium overload has not been determined. Since L-type calcium channels are a major mediator of calcium influx we determined their potential contribution to the calcium overload. Male muscular dystrophy (mdx) mice and control C57BL10ScSn (C57) mice aged 12– 16 weeks were used in all experiments. In tissue bath studies, isolated contracting left atria from mdx revealed a reduced potency to the dihydropyridine (DHP) agonist BayK8644 and antagonist nifedipine (P < 0.05). Similarly, radioligand binding studies using the DHP antagonist [3H]-PN 200-110 showed a reduced potency (P < 0.05) in isolated membranes, associated with an increased receptor density (P < 0.05). The increased receptor density was supported by RT-PCR experiments revealing increased RNAfor the DHP receptor. Patch clamp studies revealed the presence of a diltiazem sensitive calcium current that showed delayed inactivation in isolated mdx myocytes (P < 0.01). In conclusion, the increased number of DHP binding sites and the delay in L-type current inactivation may both contribute to increased calcium influx and hence calcium overload in the dystrophin deficient mdx cardiac myocytes.
Resumo:
The 19-amino acid conopeptide (rho-TIA) was shown previously to antagonize noncompetitively alpha(1B)-adrenergic receptors (ARs). Because this is the first peptide ligand for these receptors, we compared its interactions with the three recombinant human alpha(1)-AR subtypes (alpha(1A), alpha(1B), and alpha(1D)). Radioligand binding assays showed that rho-TIA was 10-fold selective for human alpha(1B)- over alpha(1A)- and alpha(1D)-ARs. As observed with hamster alpha(1B)-ARs, rho-TIA decreased the number of binding sites (B-max) for human alpha(1B)-ARs without changing affinity (K-D), and this inhibition was unaffected by the length of incubation but was reversed by washing. However, rho-TIA had opposite effects at human alpha(1A)-ARs and alpha(1D)-ARs, decreasing KD without changing Bmax, suggesting it acts competitively at these subtypes. rho-TIA reduced maximal NE-stimulated [H-3] inositol phosphate formation in HEK293 cells expressing human alpha(1B)-ARs but competitively inhibited responses in cells expressing alpha(1A)- or alpha(1D)-ARs. Truncation mutants showed that the amino-terminal domains of alpha(1B)- or alpha(1D)-ARs are not involved in interaction with rho-TIA. Alanine-scanning mutagenesis of rho-TIA showed F18A had an increased selectivity for alpha(1B)-ARs, and F18N also increased subtype selectivity. I8A had a slightly reduced potency at alpha(1B)-ARs and was found to be a competitive, rather than noncompetitive, inhibitor in both radioligand and functional assays. Thus rho-TIA noncompetitively inhibits alpha(1B)-ARs but competitively inhibits the other two subtypes, and this selectivity can be increased by mutation. These differential interactions do not involve the receptor amino termini and are not because of the charged nature of the peptide, and isoleucine 8 is critical for its noncompetitive inhibition at alpha(1B)-ARs.
Resumo:
1. Intracellular recordings were made from neurones in the rat otic ganglion in vitro in order to investigate their morphological, physiological and synaptic properties. We took advantage of the simple structure of these cells to test for a possible role of calcium influx via nicotinic acetylcholine receptors during synaptic transmission. 2. Cells filled with biocytin comprised a homogeneous population with ovoid somata and sparse dendritic trees. Neurones had resting membrane potentials of -53 +/- 0.7 mV (n = 69), input resistances of 112 + 7 M Omega, and membrane time constants of 14 +/- 0.9 ms (n = 60). Upon depolarization, all cells fired overshooting action potentials which mere followed by an apamin-sensitive after-hyperpolarization (AHP). In response to a prolonged current injection, all neurones fired tonically. 3. The repolarization phase of action potentials had a calcium component which was mediated by N-type calcium channels. Application of omega-conotoxin abolished both the repolarizing hump and the after-hgrperpolarization suggesting that calcium influx via N-type channels activates SK-type calcium-activated potassium channels which underlie the AHP. 4. The majority (70%) of neurones received innervation from a single preganglionic fibre which generated a suprathreshold excitatory postsynaptic potential mediated by nicotinic acetylcholine receptors. The other 30% of neurones also had one or more subthreshold nicotinic inputs. 5. Calcium influx via synaptic nicotinic receptors contributed to the AHP current, indicating that this calcium has access to the calcium-activated potassium channels and therefore plays a role in regulating cell excitability.
Resumo:
The results of this study challenge the widely held view that growth hormone (GH) acts only during the postnatal period. RNA phenotyping shows transcripts for the GH receptor and GH-binding protein in mouse preimplantation embryos of all stages from fertilized eggs (day 1) to blastocysts (day 4). An antibody specific to the cytoplasmic region of the GH receptor revealed receptor protein expression, first in two-cell embryos, the stage of activation of the embryonic genome (day 2), and in all subsequent stages, In cleavage-stage embryos this immunoreactivity was localized mainly to the nucleus, but clear evidence of membrane labeling was apparent in blastocysts. GH receptor immunoreactivity was also observed in cumulus cells associated with unfertilized oocytes but not in the unfertilized oocytes. The blastocyst receptor was demonstrated to be functional, exhibiting the classic bell-shaped dose-response curves for GH stimulation of both 3-O-methyl glucose transport and protein synthesis. Maximal stimulation of 40-50% was seen for both responses at less than 1 ng/ml recombinant GH, suggesting a role for maternal GK. However mRNA transcripts for GH were also detected from the morula stage (day 3) by using reverse transcription-PCR, and GH immunoreactivity was seen in blastocysts. These observations raise the possibility of a paracrine/autocrine GH loop regulating embryonic development in its earliest stages.
Resumo:
In a previous study, we found that the cytokine (human) leukemia inhibitory factor (hLIF) significantly reduced plasma cholesterol levels and the accumulation of lipid in aortic tissues of cholesterol-fed rabbits after 4 weeks of treatment. The mechanisms by which this occurs were investigated in the present study. This involved examining the effect of hLIF on (1) the level of plasma cholesterol at different times throughout the 4-week treatment and diet period; (2) smooth muscle cell (SMC) and macrophage-derived foam cell formation in vitro; and (3) LDL receptor expression and uptake in the human hepatoma cell line HepG2. At time zero, an osmotic minipump (2-mL capacity; infusion rate, 2.5 mu L/h; 28 days) containing either hLIF (30 mu g.kg(-1).d(-1)) or saline was inserted into the peritoneal cavity of New Zealand White rabbits (N=24). Rabbits were divided into four groups of six animals each. Group 1 received a normal diet/saline; group 2, a normal diet/hLIF; group 3, a 1% cholesterol diet/saline; and group 4, a 1% cholesterol diet/hLIF. hLIF had no effect on the plasma lipids or artery wall of group 2 rabbits (normal diet). However, in group 4 rabbits, plasma cholesterol levels and the percent surface area of thoracic aorta covered by fatty streaks was decreased by approximate to 30% and 80%, respectively, throughout all stages of the 4-week treatment period. In vitro, hLIF failed to prevent lipoprotein uptake by either SMCs or macrophages (foam cell formation) when the cells were exposed to P-VLDL for 24 hours. In contrast, hLIF (100 ng/mL) added to cultured human hepatoma HepG2 cells induced a twofold or threefold increase in intracellular lipid accumulation in the medium containing 10% lipoprotein-deficient serum or 10% fetal calf serum, respectively. This was accompanied by a significant non-dose-dependent increase in LDL receptor expression in hLIF-treated HepG2 cells incubated with LDL (20 mu g/mL) when compared with controls (P
Resumo:
Basic fibroblast growth factor (FGF2) stimulates proliferation of the globose basal cells, the neuron:ll precursor in the olfactory epithelium. The present study investigates the expression of basic fibroblast growth factor and fibroblast growth factor receptors in the adult olfactory epithelium. FGF2 immunoreactivity was expressed widely in the olfactory epithelium, with the highest density of immunoreactivity in the supporting cells. In contrast, most cells in the epithelium expressed FGF2 mRNA. Fibroblast growth factor receptor-1 (FGFr1) immunoreactivity was densest in the basal cell and neuronal layers of the olfactory epithelium and on the apical surface of supporting cells. In the lamina propria FGF2 immunoreactivity and mRNA were densest in cells close to the olfactory nerve bundles. FGFr1 immunoreactivity was heaviest on the olfactory ensheathing cells. Using reverse transcriptase-polymerase chain reaction analysis, the olfactory epithelium was shown to express only three receptor splice variants, including one (FGFr1c) with which basic fibroblast growth factor has high affinity. Other receptor splice variants were present in the lamina propria. Taken together, these observations indicate endogenous sources of FGF? within the olfactory epithelium and lamina propria and suggest autocrine and paracrine pathways via which FGF2 might regulate olfactory neurogenesis. The observation of only three receptor splice variants in the olfactory epithelium limits the members of the fibroblast growth factor family which could act in the olfactory epithelium. The widespread distribution of receptors suggests that fibroblast growth factors may have roles other than proliferation of globose basal cells. (C) 2001 Published by Elsevier Science B.V.
Resumo:
Four different fibroblast growth factor receptors (FGFR) are known, three of which have splice variants (known as the b and c variants) in the FGF-binding domain, to give different patterns of sensitivity to the different FGFs. The expression of the b and c variants of the FGF receptors. together with the expression of the ligands FGF1. FGF2, FGF3, FGF7, FGF8b and FGF8c, was determined by quantitative reverse transcription-polymerase chain reaction in developing whole mouse inner ears, and in dissected components of the postnatal mouse inner ear. At embryonic age (E)10.5 days, when the otocyst is a simple closed sac, the receptor most heavily expressed was FGFR2b, relative to the postnatal day 0 level. Over the period E10.5-E12.5. during which the structures of the inner ear start to form, the expression of the different FGF receptors increased 10(2)-10(4) fold per unit of tissue, and there was a gradual switch towards expression of the 'c' splice variants of FGFR2 and FGFR3 rather than the 'b' variants. At E10.5, the ligands most heavily expressed, relative to the postnatal day 0 level, were FGF3, FGF8b and FGF8c. In the postnatal inner eat. the patterns of expression of receptors and ligands tended to be correlated, such that receptor variants were expressed in the same regions as the ligands that are known to activate them effectively. The neural/sensory region expressed high levels of FGFR3c, and high levels of the ligand FGF8b. The same area also expressed high levels of FGFR1b and FGFR2b, and high levels of FGF3. The lateral wall of the cochlea (including the stria vascularis and the spiral ligament) expressed high levels of FGFR1c and FGF1. 11 is suggested that the different FGF receptors and ligands are expressed in a spatially coordinated pattern to selectively program cochlear development. (C) 2001 Elsevier Science B.V. All rights reserved.