135 resultados para Fragmentation Chain-transfer
Resumo:
Previously we described activating mutations of h beta(c), the common signaling subunit of the receptors for the hematopoietic and inflammatory cytokines, GM-CSF, IL-3, and IL-5. The activated mutant, h beta(c)FI Delta, is able to confer growth factor-independent proliferation on the murine myeloid cell line FDC-P1, and on primary committed myeloid progenitors. We have used this activating mutation to study the effects of chronic cytokine receptor stimulation. Transgenic mice were produced carrying the h beta(c)FI Delta cDNA linked to the constitutive promoter derived from the phosphoglycerate kinase gene, PGK-1. Transgene expression was demonstrated in several tissues and functional activity of the mutant receptor was confirmed in hematopoietic tissues by the presence of granulocyte macrophage and macrophage colony-forming cells (CFU-GM and CFU-M) in the absence of added cytokines. All transgenic mice display a myeloproliferative disorder characterized by splenomegaly, erythrocytosis, and granulocytic and megakaryocytic hyperplasia. This disorder resembles the human disease polycythemia vera, suggesting that activating mutations in h beta(c) may play a role in the pathogenesis of this myeloproliferative disorder. In addition, these transgenic mice develop a sporadic, progressive neurological disease and display bilateral, symmetrical foci of necrosis in the white matter of brain stem associated with an accumulation of macrophages. Thus, chronic h beta(c) activation has the potential to contribute to pathological events in the central nervous system.
Resumo:
As a consequence of the transfer of the type species Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum, the name of the genus Conglomeromonas must be changed in accordance with Rule 37a(1) of the International Code of Nomenclature of Bacteria. Consequently, it is proposed that the subspecies Conglomeromonas largomobilis subsp, parooensis be transferred to the genus Skermanella gen, nov. as the type species Skermanella parooensis gen, nov., sp, nov. This taxon belongs to an isolated subline of descent in the Azospirillum branch of the alpha-Proteobacteria. The spelling of the specific epithet of Azospirillum largomobile is corrected to Azospirillum largimobile.
Resumo:
In this paper, a solution method is presented to deal with fully coupled problems between medium deformation, pore-fluid flow and heat transfer in fluid-saturated porous media having supercritical Rayleigh numbers. To validate the present solution method, analytical solutions to a benchmark problem are derived for some special cases. After the solution method is validated, a numerical study is carried out to investigate the effects of medium thermoelasticity on high Rayleigh number steady-state heat transfer and mineralization in fluid-saturated media when they are heated from below. The related numerical results have demonstrated that: (1) medium thermoelasticity has a little influence on the overall pattern of convective pore-fluid flow, but it has a considerable effect on the localization of medium deformation, pore-fluid flow, heat transfer and mineralization in a porous medium, especially when the porous medium is comprised of soft rock masses; (2) convective pore-fluid flow plays a very important role in the localization of medium deformation, heat transfer and mineralization in a porous medium. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
Female reproductive tissues of the ornamental tobacco amass high levels of serine proteinase inhibitors (PIs) for protection against pests and pathogens. These PIs are produced from a precursor protein composed of six repeats each with a protease reactive site. Here we show that proteolytic processing of the precursor generates five single-chain PIs and a remarkable two-chain inhibitor formed by disulfide-bond Linkage of Nand C-terminal peptide fragments. Surprisingly, PI precursors adopt this circular structure regardless of the number of inhibitor domains, suggesting this bracelet-like conformation is characteristic of the widespread potato inhibitor II (Pot II) protein family.
Resumo:
We study the spin-1/2 Heisenberg models on an anisotropic two-dimensional lattice which interpolates between the square lattice at one end, a set of decoupled spin chains on the other end, and the triangular-lattice Heisenberg model in between. By series expansions around two different dimer ground states and around various commensurate and incommensurate magnetically ordered states, we establish the phase diagram for this model of a frustrated antiferromagnet. We find a particularly rich phase diagram due to the interplay of magnetic frustration, quantum fluctuations, and varying dimensionality. There is a large region of the usual two-sublattice Neel phase, a three-sublattice phase for the triangular-lattice model, a region of incommensurate magnetic order around the triangular-lattice model, and regions in parameter space where there is no magnetic order. We find that the incommensurate ordering wave vector is in general altered from its classical value by quantum fluctuations. The regime of weakly coupled chains is particularly interesting and appears to be nearly critical. [S0163-1829(99)10421-1].
Resumo:
CD4-selective targeting of an antibody-polycation-DNA complex was investigated The complex was synthesized with the anti-CD4 monoclonal antibody B-F5, polylysine(268) (pLL) and either the pGL3 control vector containing the luciferase reporter gene or the pGeneGrip vector containing the green fluorescent protein (GFP) gene. B-F5-pLL-DNA complexes inhibited the binding of I-125-B-F5 to CD4(+) Jurkat cells, while complexes synthesised either without B-F5 or using a non-specific mouse IgG1 antibody had little or no effect Expression of the luciferase reporter gene was achieved in Jurkat cells using the B-F5-pLL-pGL3 complex and was enhanced in the presence of PMA. Negligible luciferase activity was defected with the non-specific antibody complex in Jurkat cells or with the B-F5-pLL-pGL3 complex in the CD4(-) K-562 cells. Using complexes synthesised with the pGeneGrip vector, the transfection efficiency in Jurkat and K-562 cells was examined using confocal microscopy. More than 95% of Jurkat cells expressed GFP and the level of this expression was markedly enhanced by PMA. Negligible GFP expression was seen in K-562 cells or when B-F5 was replaced by a nonspecific antibody. Using flow cytometry, fluorescein-labelled complex showed specific targeting to CD4(+) cells in a mixed cell population from human peripheral blood. These studies demonstrate the selective transfection of CD4(+) T-lymphoid cells using a polycation-based gene delivery system. The complex may provide a means of delivering anti-HIV gene therapies to CD4(+) cells in vivo.
Resumo:
Percolative fragmentation was confirmed to occur during gasification of three microporous coal chars. Indirect evidence obtained by the variation of electrical resistivity (ER) with conversion was supported by direct observation of numerous fragments during gasification. The resistivity increases slowly at low conversions and then sharply after a certain conversion value, which is a typical percolation phenomenon suggesting the occurrence of internal fragmentation at high conversion. Two percolation models are applied to interpret the experimental data and determine the percolation threshold. A percolation threshold of 0.02-0.07 was found, corresponding to a critical conversion of 92-96% for fragmentation. The electrical resistivity variation at high conversions is found to be very sensitive to diffusional effects during gasification. Partially burnt samples with a narrow initial particle size range were also observed microscopically, and found to yield a large number of small fragments even when the particles showed no disintegration and chemical control prevailed. It is proposed that this is due to the separation of isolated clusters from the particle surface. The particle size distribution of the fragments was essentially independent of the reaction conditions and the char type, and supported the prediction by percolation theory that the number fraction distribution varies linearly with mass in a log-log plot. The results imply that perimeter fragmentation would occur in practical combustion systems in which the reactions are strongly diffusion affected.
Resumo:
We have grown surfactant-templated silicate films at the air-water interface using n-alkyltrimethylammonium bromide and chloride in an acid synthesis with tetraethyl orthosilicate as the silicate source. The films have been grown with and without added salt (sodium chloride, sodium bromide) and with n-alkyl chain lengths from 12 to 18, the growth process being monitored by X-ray reflectometry. Glassy, hexagonal, and lamellar structures have been produced in ways that are predictable from the pure surfactant-water phase diagrams. The synthesis appears to proceed initially through an induction period characterized by the accumulation of silica-coated spherical micelles near the surface. All syntheses, except those involving C(12)TACl, show a sudden transformation of the spherical micellar phase to a hexagonal phase. This occurs when the gradually increasing ionic strength and/or changing ethanol concentration is sufficient to change the position of boundaries within the phase diagram. A possible mechanism for this to occur may be to induce a sphere to rod transition in the micellar structure. This transformation, as predicted from the surfactant-water phase diagram, can be induced by addition of salts and is slower for chloride than bromide counteranions. The hexagonal materials change in cell dimension as the chain length is changed in a way consistent with theoretical model predictions. All the materials have sufficiently flexible silica frameworks that phase interconversion is observed both from glassy to hexagonal and from hexagonal, to lamellar and vice versa in those surfactant systems where multiple phases are found to exist.
Resumo:
We use the finite element method to solve the coupled problem between convective pore-fluid flow, heat transfer and mineralization in layered hydrothermal systems with upward throughflow. In particular, we present the improved rock alteration index (IRAI) concept for predicting the most probable precipitation and dissolution regions of gold (Au) minerals in the systems. To validate the numerical method used in the computation, analytical solutions to a benchmark problem have been derived. After the numerical method is validated, it is used to investigate the pattern of pore-fluid Aom, the distribution of temperature and the mineralization pattern of gold minerals in a layered hydrothermal system with upward throughflow. The related numerical results have demonstrated that the present concept of IRAI is useful and applicable for predicting the most probable precipitation and dissolution regions of gold (Au) minerals in hydrothermal systems. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
We show that an arbitrary system described by two dipole moments exhibits coherent superpositions of internal states that can be completely decoupled fi om the dissipative interactions (responsible for decoherence) and an external driving laser field. These superpositions, known as dark or trapping states, can he completely stable or can coherently interact with the remaining states. We examine the master equation describing the dissipative evolution of the system and identify conditions for population trapping and also classify processes that can transfer the population to these undriven and nondecaying states. It is shown that coherent transfers are possible only if the two systems are nonidentical, that is the transitions have different frequencies and/or decay rates. in particular, we find that the trapping conditions can involve both coherent and dissipative interactions, and depending on the energy level structure of the system, the population can be trapped in a linear superposition of two or more bare states, a dressed state corresponding to an eigenstate of the system plus external fields or, in some cases. in one of the excited states of the system. A comprehensive analysis is presented of the different processes that are responsible for population trapping, and we illustrate these ideas with three examples of two coupled systems: single V- and Lambda-type three-level atoms and two nonidentical tao-level atoms, which are known to exhibit dark states. We show that the effect of population trapping does not necessarily require decoupling of the antisymmetric superposition from the dissipative interactions. We also find that the vacuum-induced coherent coupling between the systems could be easily observed in Lambda-type atoms. Our analysis of the population trapping in two nonidentical atoms shows that the atoms can be driven into a maximally entangled state which is completely decoupled from the dissipative interaction.
Resumo:
Cultured melanoma cells release soluble factors that influence immune responses. Screening of a cDNA library with anti-sera from a melanoma patient identified an immunoreactive plaque, which encoded heavy-chain ferritin (H-ferritin), Previous studies have drawn attention to the immunosuppressive effects of this molecule and prompted further studies on its biochemical and functional properties in human melanoma, These studies demonstrated, firstly, that H-ferritin appeared to be secreted by melanoma cells, as shown by immunoprecipitation of a 21.5 kDa band from supernatants. It was also detected in extracts of melanoma cells by Western blotting as 43 and 64 kDa dimers and trimers of the 21.5 kDa fraction. Secondly, flow-cytometric analysis of H- and light-chain ferritin (L-ferritin) expression on melanoma showed a wide variation in L-ferritin expression and consequently of the ratio of H- to L-ferritin expression. Suppression of mitogenic responses of lymphocytes to anti-CD3 showed a correlation with the ratio of H- to L-ferritin in the supernatants and was specific for H-ferritin, as shown by inhibition studies with a monoclonal antibody (MAb) against H-ferritin, Similar results were obtained with H- and L-ferritin from other sources. Suppression of mitogenic responses of lymphocytes to anti-CD3 by H-ferritin was inhibited using a MAb against IL-IO, which suggested that the immunosuppressive effect of H-ferritin was mediated by IL-IO, Assays of cytokine production from anti-CD3-stimulated lymphocytes showed that H-ferritin markedly increased production of IL-10 and IFN-gamma and had only slight effects on IL-2 and IL-4 production, Our results suggest that melanoma cells may be a major source of H-ferritin and that production of the latter may account for some of the immunosuppressive effects of melanoma, (C) 2001 Wiley-Liss. Inc.
MHC class II expression is regulated in dendritic cells independently of invariant chain degradation
Resumo:
We have investigated the mechanisms that control MHC class II (MHC II) expression in immature and activated dendritic cells (DC) grown from spleen and bone marrow precursors. Degradation of the MHC II chaperone invariant chain (li), acquisition of peptide cargo by MHC II, and delivery of MHC II-peptide complexes to the cell surface proceeded similarly in both immature and activated DC. However, immature DC reendocytosed and then degraded the MHC II-peptide complexes much faster than the activated DC. MHC II expression in DC is therefore not controlled by the activity of the protease(s) that degrade Ii, but by the rate of endocytosis of peptide-loaded MHC II. Late after activation, DC downregulated MHC II synthesis both in vitro and in vivo.
Resumo:
A numerical model of heat transfer in fluidized-bed coating of solid cylinders is presented. By defining suitable dimensionless parameters, the governing equations and its associated initial and boundary conditions are discretized using the method of orthogonal collocation and the resulting ordinary differential equations simultaneously solved for the dimensionless coating thickness and wall temperatures. Parametric Studies showed that the dimensionless coating thickness and wall temperature depend on the relative heat capacities of the polymer powder and object, the latent heat of fusion and the size of the cylinder. Model predictions for the coating thickness and wall temperature compare reasonably well with numerical predictions and experimental coating data in the literature and with our own coating experiments using copper cylinders immersed in nylon-11 and polyethylene powders. (C) 2001 Elsevier Science Ltd. All rights reserved.