103 resultados para Finite
Resumo:
The role of PACs (primary adsorption centers) in the mesopore (i.e., transport) region of activated carbons during adsorption of polar species, such as water, is unclear. A classical model of three-dimensional adsorption on finite PACs is presented. The model is a preliminary, theoretical investigation into adsorption on mesopore PACs and is intended to give some insight into the energetic and physical processes at work. Work processes are developed to obtain isotherms and three-dimensional sorbate growth on PACs of varying size and energetic characteristics. The work processes allow two forms of adsorbed phase growth: densification at constant boundary and boundary growth at constant density. Relatively strong sorbate-sorbent interactions and strong surface tension favor adsorbed phase densification over boundary growth. Conversely, relatively weak sorbate-sorbent interactions and weak surface tension favor boundary growth over densification. If sorbate-sorbate interactions are strong compared to sorbate-sorbent interactions, condensation with hysteresis occurs. This can also give rise to delayed boundary growth, where all initial adsorption occurs in the monolayer only. The results indicate that adsorbed phase growth on PACs may be quite complex.
Resumo:
Error condition detected We consider discrete two-point boundary value problems of the form D-2 y(k+1) = f (kh, y(k), D y(k)), for k = 1,...,n - 1, (0,0) = G((y(0),y(n));(Dy-1,Dy-n)), where Dy-k = (y(k) - Yk-I)/h and h = 1/n. This arises as a finite difference approximation to y" = f(x,y,y'), x is an element of [0,1], (0,0) = G((y(0),y(1));(y'(0),y'(1))). We assume that f and G = (g(0), g(1)) are continuous and fully nonlinear, that there exist pairs of strict lower and strict upper solutions for the continuous problem, and that f and G satisfy additional assumptions that are known to yield a priori bounds on, and to guarantee the existence of solutions of the continuous problem. Under these assumptions we show that there are at least three distinct solutions of the discrete approximation which approximate solutions to the continuous problem as the grid size, h, goes to 0. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
A high definition, finite difference time domain (HD-FDTD) method is presented in this paper. This new method allows the FDTD method to be efficiently applied over a very large frequency range including low frequencies, which are problematic for conventional FDTD methods. In the method, no alterations to the properties of either the source or the transmission media are required. The method is essentially frequency independent and has been verified against analytical solutions within the frequency range 50 Hz-1 GHz. As an example of the lower frequency range, the method has been applied to the problem of induced eddy currents in the human body resulting from the pulsed magnetic field gradients of an MRI system. The new method only requires approximately 0.3% of the source period to obtain an accurate solution. (C) 2003 Elsevier Science Inc. All rights reserved.
Resumo:
This paper describes the modification of a two-dimensional finite element long wave hydrodynamic model in order to predict the net current and water levels attributable to the influences of waves. Tests examine the effects of the application of wave induced forces, including comparisons to a physical experiment. An example of a real river system is presented with comparisons to measured data, which demonstrate the importance of simulating the combined effects of tides and waves upon hydrodynamic behavior. (C) 2002 Elsevier Science Ltd. All rights reserved.
Finite mixture regression model with random effects: application to neonatal hospital length of stay
Resumo:
A two-component mixture regression model that allows simultaneously for heterogeneity and dependency among observations is proposed. By specifying random effects explicitly in the linear predictor of the mixture probability and the mixture components, parameter estimation is achieved by maximising the corresponding best linear unbiased prediction type log-likelihood. Approximate residual maximum likelihood estimates are obtained via an EM algorithm in the manner of generalised linear mixed model (GLMM). The method can be extended to a g-component mixture regression model with the component density from the exponential family, leading to the development of the class of finite mixture GLMM. For illustration, the method is applied to analyse neonatal length of stay (LOS). It is shown that identification of pertinent factors that influence hospital LOS can provide important information for health care planning and resource allocation. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The marsh porosity method, a type of thin slot wetting and drying algorithm in a two-dimensional finite element long wave hydrodynamic model, is discussed and analyzed to assess model performance. Tests, including comparisons to simple examples and theoretical calculations, examine the effects of varying the marsh porosity parameters. The findings demonstrate that the wetting and drying concept of marsh porosity, often used in finite element hydrodynamic modeling, can behave in a more complex manner than initially expected.
Resumo:
Let Q be a stable and conservative Q-matrix over a countable state space S consisting of an irreducible class C and a single absorbing state 0 that is accessible from C. Suppose that Q admits a finite mu-subinvariant measure in on C. We derive necessary and sufficient conditions for there to exist a Q-process for which m is mu-invariant on C, as well as a necessary condition for the uniqueness of such a process.
Resumo:
We establish maximum principles for second order difference equations and apply them to obtain uniqueness for solutions of some boundary value problems.
Resumo:
We describe a new technique for finding efficient presentations for finite groups. We use it to answer three previously unresolved questions about the efficiency of group and semigroup presentations.
Resumo:
We derive optimal cloning limits for finite Gaussian distributions of coherent states and describe techniques for achieving them. We discuss the relation of these limits to state estimation and the no-cloning limit in teleportation. A qualitatively different cloning limit is derived for a single-quadrature Gaussian quantum cloner.
Resumo:
We analyse the relation between local two-atom and total multi-atom entanglements in the Dicke system composed of a large number of atoms. We use concurrence as a measure of entanglement between two atoms in the multi-atom system, and the spin squeezing parameter as a measure of entanglement in the whole n-atom system. In addition, the influence of the squeezing phase and bandwidth on entanglement in the steady-state Dicke system is discussed. It is shown that the introduction of a squeezed field leads to a significant enhancement of entanglement between two atoms, and the entanglement increases with increasing degree of squeezing and bandwidth of the incident squeezed field. In the presence of a coherent field the entanglement exhibits a strong dependence on the relative phase between the squeezed and coherent fields, that can jump quite rapidly from unentangled to strongly entangled values when the phase changes from zero to pi. We find that the jump of the degree of entanglement is due to a flip of the spin squeezing from one quadrature component of the atomic spin to the other component when the phase changes from zero to pi. We also analyse the dependence of the entanglement on the number of atoms and find that, despite the reduction in the degree of entanglement between two atoms, a large entanglement is present in the whole n-atom system and the degree of entanglement increases as the number of atoms increases.