155 resultados para Experimental Low Back Pain
Resumo:
Limb movement imparts a perturbation to the body. The impact of that perturbation is limited via anticipatory postural adjustments. The strategy by which the CNS controls anticipatory postural adjustments of the trunk muscles during limb movement is altered during acute back pain and in people with recurrent back pain, even when they are pain free. The altered postural strategy probably serves to protect the spine in the short term, but it is associated with a cost and is thought to predispose spinal structures to injury in the long term. It is not known why this protective strategy might occur even when people are pain free, but one possibility is that it is caused by the anticipation of back pain. In eight healthy subjects, recordings of intramuscular EMG were made from the trunk muscles during single and repetitive arm movements. Anticipation of experimental back pain and anticipation of experimental elbow pain were elicited by the threat of painful cutaneous stimulation. There was no effect of anticipated experimental elbow pain on postural adjustments. During anticipated experimental back pain, for single arm movements there was delayed activation of the deep trunk muscles and augmentation of at least one superficial trunk muscle. For repetitive arm movements, there was decreased activity and a shift from biphasic to monophasic activation of the deep trunk muscles and increased activity of superficial trunk muscles during anticipation of back pain. In both instances, the changes were consistent with adoption of an altered strategy for postural control and were similar to those observed in patients with recurrent back pain. We conclude that anticipation of experimental back pain evokes a protective postural strategy that stiffens the spine. This protective strategy is associated with compressive cost and is thought to predispose to spinal injury if maintained long term. © Guarantors of Brain 2004; all rights reserved
Resumo:
Study Design. A cross-sectional case-control study. Objectives. To examine the effect of fatigue on torque output as well as electromyographic frequency and amplitude values of trunk muscles during isometric axial rotation exertion in back pain patients and to compare the results with a matched control group. Summary of Background Data. Back pain patients exhibited different activation strategies in trunk muscles during the axial rotation exertions. Fatigue changes of abdominal and back muscles during axial rotation exertion have not been examined in patients with back pain. Methods. Twelve back pain patients and 12 matched controls performed isometric fatiguing axial rotation to both sides at 80% maximum voluntary contraction in a standing position. During the fatiguing exertion, electromyographic changes of rectus abdominis, external oblique, internal oblique, latissimus dorsi, iliocostalis lumborum, and multifidus were recorded bilaterally. The primary torque in the transverse plane and the coupling torques in sagittal and coronal planes were also measured. Results. No difference in the endurance capacity was found between back pain and control groups. At the initial period of the exertion, back pain patients demonstrated a statistical trend (P = 0.058) of greater sagittal coupling torque as well as lower activity of rectus abdominis and multifidus and higher activity in external oblique. During the fatigue process similar changes of coupling torque were demonstrated in both sagittal and coronal planes, but a smaller fatigue rate for right external oblique, increase in median frequency for latissimus dorsi, and lesser increase in activity for back muscles were found in the back pain group compared with the control group. Conclusions. Alterations in electromyographic activation and fatigue rates of abdominal and back muscles demonstrated during the fatigue process provide insights into the muscle dysfunctions in back pain and may help clinicians to devise more rational treatment strategies.
Resumo:
Inconclusive findings have been shown in previous studies comparing lumbar range of movement (LROM) and lumbar lordosis between back pain patients and healthy subjects. In these studies, confounding variables such as age, gender, height, obesity, and pain level were usually not well controlled. The present study aimed to compare LROM and lumbar lordosis between back pain patients and matched controls. Fifteen male back pain patients and 15 age-, height-, obesity-, and physical activity-matched male controls were investigated. To minimize the effect of pain on the measurements, only patients with minimal or no pain at the time of testing were included in the study. Inclinometer technique was used for the evaluation of LROM in flexion, extension and lateral flexion as well as lumbar lordosis. A lumbar rotameter was used for measuring axial rotation. Pelvic motion was limited by a pelvic restraint device during LROM measurements. Results showed that there were no significant differences between the back pain and control groups in flexion, extension, lateral flexion and axial rotation LROM and also in lumbar lordosis. This may indicate that when a back pain patient is not in pain, LROM and lumbar lordosis may not be the measures that distinguish between back pain patients and subjects without back pain.
Resumo:
Purpose: The aims of the present study were to examine electromyographic (EMG) activity of six bilateral trunk muscles during maximal contraction in three cardinal planes, and to determine the direction of contraction that gives maximal activation for each muscle. both for healthy subjects and back-pain patients. Methods: Twenty-eight healthy subjects and 15 back-pain patients performed maximum voluntary contractions in three cardinal planes, Surface EMG signals were recorded from rectus abdominis, external oblique, internal oblique, latissimus dorsi, iliocostalis lumborum, and multifidus bilaterally. Root mean square values of the EMG data were calculated to quantify I the amplitude of EMG signals. Results: For both healthy subjects and back-pain patients. one single direction of contraction was found to give the maximum EMG signals for most muscles. Rectus abdominis demonstrated maximal activity in trunk flexion, external oblique in lateral flexion. internal oblique in axial rotation, and multifidus in extension. For the latissimus dorsi and iliocostalis lumborum. maximal activity was demonstrated in more than one cardinal plane. Conclusion: This study has implications for future research involving normalization of muscle activity to maximal levels required in many trunk EMG studies. As the latissimus dorsi and iliocostalis lumborum demonstrate individual differences in the plane that gives maximal activity, these muscles may require testing in more than one plane.
Resumo:
Many studies have identified changes in trunk muscle recruitment in clinical low back pain (LBP). However, due to the heterogeneity of the LBP population these changes have been variable and it has been impossible to identify a cause-effect relationship. Several studies have identified a consistent change in the feed-forward postural response of transversus abdominis (TrA), the deepest abdominal muscle, in association with arm movements in chronic LBP. This study aimed to determine whether the feedforward recruitment of the trunk muscles in a postural task could be altered by acute experimentally induced LBP. Electromyographic (EMG) recordings of the abdominal and paraspinal muscles were made during arm movements in a control trial, following the injection of isotonic (non-painful) and hypertonic (painful) saline into the longissimus muscle at L4, and during a 1-h follow-up. Movements included rapid arm flexion in response to a light and repetitive arm flexion-extension. Temporal and spatial EMG parameters were measured. The onset and amplitude of EMG of most muscles was changed in a variable manner during the period of experimentally induced pain. However, across movement trials and subjects the activation of TrA was consistently reduced in amplitude or delayed. Analyses in the time and frequency domain were used to confirm these findings. The results suggest that acute experimentally induced pain may affect feedforward postural activity of the trunk muscles. Although the response was variable, pain produced differential changes in the motor control of the trunk muscles, with consistent impairment of TrA activity.
Resumo:
Aberrant movement patterns and postures are obvious to clinicians managing patients with musculoskeletal pain. However, some changes in motor function that occur in the presence of pain are less apparent. Clinical and basic science investigations have provided evidence of the effects of nociception on aspects of motor function. Both increases and decreases in muscle activity have been shown, along with alterations in neuronal control mechanisms, proprioception, and local muscle morphology. Various models have been proposed in an attempt to provide an explanation for some of these changes. These include the vicious cycle and pain adaptation models. Recent research has seen the emergence of a new model in which patterns of muscle activation and recruitment are altered in the presence of pain (neuromuscular activation model). These changes seem to particularly affect the ability of muscles to perform synergistic functions related to maintaining joint stability and control. These changes are believed to persist into the period of chronicity. This review shows current knowledge of the effect of musculoskeletal pain on the motor system and presents the various proposed models, in addition to other shown effects not covered by these models. The relevance of these models to both acute and chronic pain is considered. It is apparent that people experiencing musculoskeletal pain exhibit complex motor responses that may show some variation with the time course of the disorder. (C) 2001 by the American Pain Society.
Resumo:
Many authors report changes in the control of the trunk muscles in people with low back pain (LBP). Although there is considerable disagreement regarding the nature of these changes, we have consistently found differential effects on the deep intrinsic and superficial muscles of the lumbopelvic region. Two issues require consideration; first, the potential mechanisms for these changes in control, and secondly, the effect or outcome of changes in control for lumbopelvic function. Recent data indicate that experimentally induced pain may replicate some of the changes identified in people with LBP. While this does not exclude the possibility that changes in control of the trunk muscles may lead to pain, it does argue that, at least in some cases, pain may cause the changes in control. There are many possible mechanisms, including changes in excitability in the motor pathway, changes in the sensory system, and factors associated. with the attention demanding, stressful and fearful aspects of pain. A new hypothesis is presented regarding the outcome from differential effects of pain on the elements of the motor system. Taken together these data argue for strategies of prevention and rehabilitation of LBP (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Pain changes postural activation of the trunk muscles. The cause of these changes is not known but one possibility relates to the information processing requirements and the stressful nature of pain. This study investigated this possibility by evaluating electromyographic activity (EMG) of the deep and superficial trunk muscles associated with voluntary rapid arm movement. Data were collected from control trials, trials during low back pain (LBP) elicited by injection of hypertonic saline into the back muscles, trials during a non-painful attention-demanding task, and during the same task that was also stressful. Pain did not change the reaction time (RT) of the movement, had variable effects on RT of the superficial trunk muscles, but consistently increased RT of the deepest abdominal muscle. The effect of the attention-demanding task was opposite: increased RT of the movement and the superficial trunk muscles but no effect on RT of the deep trunk muscles. Thus, activation of the deep trunk muscles occurred earlier relative to the movement. When the attention-demanding task was made stressful, the RT of the movement and superficial trunk muscles was unchanged but the RT of the deep trunk muscles was increased. Thus, the temporal relationship between deep trunk muscle activation and arm movement was restored. This means that although postural activation of the deep trunk muscles is not affected when central nervous system resources are limited, it is delayed when the individual is also under stress. However, a non-painful attention-demanding task does not replicate the effect of pain on postural control of the trunk muscles even when the task is stressful.
Resumo:
Anterior knee pain (AKP) is common and has been argued to be related to poor patellofemoral joint control due to impaired coordination of the vasti muscles. However, there are conflicting data. Changes in motor unit firing may provide more definitive evidence. Synchronization of motor unit action potentials (MUAPs) in vastus medialis obliquus (VMO) and vastus lateralis (VL) may contribute to coordination in patellofemoral joint control. We hypothesized that synchronization may be reduced in AKP. Recordings of single MUAPs were made from VMO and multiunit electromyograph (EMG) recordings were made from VL. Averages of VL EMG recordings were triggered from the single MUAPs in VMO. Motor units in VL firing in association with the VMO motor units would appear as a peak in the VL EMG average. Data were compared to previous normative data. The proportion of trials in which a peak was identified in the triggered averages of VL EMG was reduced in people with AKP (38%) compared to controls (90%). Notably, although 80% of subjects had values less than controls, 20% were within normal limits. These results provide new evidence that motor unit synchronization is modified in the presence of pain and provide evidence for motor control dysfunction in AKP. Perspective: This study shows that coordination of motor units between the medial and lateral vasti muscles in people with anterior knee pain is reduced compared to people without knee pain. It confirms that motor control dysfunction is a factor in this condition and has implications for selection of rehabilitation strategies. (c) 2005 by the American Pain Society.
Resumo:
Patients with low back pain (LBP) often present with impaired proprioception of the lumbopelvic region. For this reason, proprioception training usually forms part of the rehabilitation protocols. New exercise equipment that produces whole body, low frequency vibration (WBV) has been developed to improve muscle function, and reportedly improves proprioception. The aim of this pilot study was to investigate whether weightbearing exercise given in conjunction with WBV would affect lumbosacral position sense in healthy individuals. For this purpose, twenty-five young individuals with no LBP were assigned randomly to an experimental or control group. The experimental group received WBV for five minutes while holding a static, semi-squat position. The control group adopted the same weightbearing position for equal time but received no vibration. A two-dimensional motion analysis system measured the repositioning accuracy of pelvic tilting in standing. The experimental (WBV) group demonstrated a significant improvement in repositioning accuracy over time (mean 0.78 degrees) representing 39% improvement. It was concluded that WBV may induce improvements in lumbosacral repositioning accuracy when combined with a weightbearing exercise. Future studies with WBV should focus on evaluating its effects with different types of exercise, the exercise time needed for optimal outcomes, and the effects on proprioception deficits in LBP patients.
Resumo:
Study Design. Experimental study of muscle changes after lumbar spinal injury. Objectives. To investigate effects of intervertebral disc and nerve root lesions on cross-sectional area, histology and chemistry of porcine lumbar multifidus. Summary of Background Data. The multifidus cross-sectional area is reduced in acute and chronic low back pain. Although chronic changes are widespread, acute changes at 1 segment are identified within days of injury. It is uncertain whether changes precede or follow injury, or what is the mechanism. Methods. The multifidus cross-sectional area was measured in 21 pigs from L1 to S1 with ultrasound before and 3 or 6 days after lesions: incision into L3 - L4 disc, medial branch transection of the L3 dorsal ramus, and a sham procedure. Samples from L3 to L5 were studied histologically and chemically. Results. The multifidus cross-sectional area was reduced at L4 ipsilateral to disc lesion but at L4 - L6 after nerve lesion. There was no change after sham or on the opposite side. Water and lactate were reduced bilaterally after disc lesion and ipsilateral to nerve lesion. Histology revealed enlargement of adipocytes and clustering of myofibers at multiple levels after disc and nerve lesions. Conclusions. These data resolve the controversy that the multifidus cross-sectional area reduces rapidly after lumbar injury. Changes after disc lesion affect 1 level with a different distribution to denervation. Such changes may be due to disuse following reflex inhibitory mechanisms.
Resumo:
Recent findings that spinal manual therapy (SMT) produces concurrent hypoalgesic and sympathoexcitatory effects have led to the proposal that SMT may exert its initial effects by activating descending inhibitory pathways from the dorsal periaqueductal gray area of the midbrain (dPAG). In addition to hypoalgesic and sympathoexcitatory effects, stimulation of the dPAG in animals has been shown to hal e a facilitatory effect on motor activity. This study sought to further investigate the proposal regarding SMT and the FAG by including a test of motor function in addition to the variables previously investigated, Using a condition randomised, placebo-controlled, double blind, repeated measures design, 30 subjects with mid to lon er cervical spine pain of insidious onset participated in the study. The results indicated that the cervical mobilisation technique produced a hypoalgesic effect as revealed by increased pressure pain thresholds on the side of treatment (P = 0.0001) and decreased resting visual analogue scale scores (P = 0.049). The treatment technique also produced a sympathoexcitatory effect with an increase in skin conductance (P < 0.002) and a decrease in skin temperature (P = < 0.02). There was a decrease in superficial neck flexor muscle activity (P < 0.0002) at the lower levels of a staged cranio-cervical flexion test. This could imply facilitation of the deep neck flexor muscles with a decreased need for co-activation of the superficial neck flexors, The combination of all findings,would support the proposal that SMT may, at least initially, exert part of its influence via activation of the PAG, (C) 2000 Harcourt Publishers Ltd.