91 resultados para Equilibrium calculation
Resumo:
Phase-equilibrium data and liquidus isotherms for the system MnO-CaO-(Al2O3 + SiO2) at silicomanganese alloy saturation have been determined in the temperature range of 1373 to 1723 K. The results are presented in the form of the pseudoternary sections MnO-CaO-(Al2O3 + SiO2) with Al2O3/SiO2 weight ratios of 0.55 and 0.65. The primary-phase fields have been identified in this range of conditions.
Resumo:
Experimental laboratory methods have been developed that enable phase-equilibria studies to be carried out on slags in the system Ca-Cu-Fe-O in equilibrium with metallic copper. These techniques involve equilibration at temperature, rapid quenching, and chemical analysis of the phases using electron-probe X-ray microanalysis (EPNIA). Equilibration experiments have been carried out in the temperature range of 1150 degreesC to 1250 degreesC (1423 to 1523 K) and in the composition range of 4 to 80 wt pct "Cu2O," 0 to 25 wt pct CaO, and 20 to 75 wt pct "Fe2O3" in equilibrium with metallic copper. Liquidus and solidus data are reported for the primary-phase fields of spinel (magnetite) and dicalcium ferrite. The resulting data have been used to construct liquidus isotherms of the CaO-"Cu2O"-"Fe2O3" system at metallic copper saturation.
Resumo:
For a parameter, we consider the modified relaxed energy of the liquid crystal system. Each minimizer of the modified relaxed energy is a weak solution to the liquid crystal equilibrium system. We prove the partial regularity of minimizers of the modified relaxed energy. We also prove the existence of infinitely many weak solutions for the special boundary value x.
Resumo:
This paper evaluates a new, low-frequency finite-difference time-domain method applied to the problem of induced E-fields/eddy currents in the human body resulting from the pulsed magnetic field gradients in MRI. In this algorithm, a distributed equivalent magnetic current is proposed as the electromagnetic source and is obtained by quasistatic calculation of the empty coil's vector potential or measurements therein. This technique circumvents the discretization of complicated gradient coil geometries into a mesh of Yee cells, and thereby enables any type of gradient coil modelling or other complex low frequency sources. The proposed method has been verified against an example with an analytical solution. Results are presented showing the spatial distribution of gradient-induced electric fields in a multi-layered spherical phantom model and a complete body model. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
In most magnetic resonance imaging (MRI) systems, pulsed magnetic gradient fields induce eddy currents in the conducting structures of the superconducting magnet. The eddy currents induced in structures within the cryostat are particularly problematic as they are characterized by long time constants by virtue of the low resistivity of the conductors. This paper presents a three-dimensional (3-D) finite-difference time-domain (FDTD) scheme in cylindrical coordinates for eddy-current calculation in conductors. This model is intended to be part of a complete FDTD model of an MRI system including all RF and low-frequency field generating units and electrical models of the patient. The singularity apparent in the governing equations is removed by using a series expansion method and the conductor-air boundary condition is handled using a variant of the surface impedance concept. The numerical difficulty due to the asymmetry of Maxwell equations for low-frequency eddy-current problems is circumvented by taking advantage of the known penetration behavior of the eddy-current fields. A perfectly matched layer absorbing boundary condition in 3-D cylindrical coordinates is also incorporated. The numerical method has been verified against analytical solutions for simple cases. Finally, the algorithm is illustrated by modeling a pulsed field gradient coil system within an MRI magnet system. The results demonstrate that the proposed FDTD scheme can be used to calculate large-scale eddy-current problems in materials with high conductivity at low frequencies.
Resumo:
Two aspects of hydrogen-air non-equilibrium chemistry related to scramjets are nozzle freezing and a process called 'kinetic afterburning' which involves continuation of combustion after expansion in the nozzle. These effects were investigated numerically and experimentally with a model scramjet combustion chamber and thrust nozzle combination. The overall model length was 0.5m, while precombustion Mach numbers of 3.1 +/- 0.3 and precombustion temperatures ranging from 740K to 1,400K were involved. Nozzle freezing was investigated at precombustion pressures of 190kPa and higher, and it was found that the nozzle thrusts were within 6% of values obtained from finite rate numerical calculations, which were within 7% of equilibrium calculations. When precombustion pressures of 70kPa or less were used, kinetic afterburning was found to be partly responsible for thrust production, in both the numerical calculations and the experiments. Kinetic afterburning offers a means of extending the operating Mach number range of a fixed geometry scramjet.
Resumo:
We present an efficient and robust method for the calculation of all S matrix elements (elastic, inelastic, and reactive) over an arbitrary energy range from a single real-symmetric Lanczos recursion. Our new method transforms the fundamental equations associated with Light's artificial boundary inhomogeneity approach [J. Chem. Phys. 102, 3262 (1995)] from the primary representation (original grid or basis representation of the Hamiltonian or its function) into a single tridiagonal Lanczos representation, thereby affording an iterative version of the original algorithm with greatly superior scaling properties. The method has important advantages over existing iterative quantum dynamical scattering methods: (a) the numerically intensive matrix propagation proceeds with real symmetric algebra, which is inherently more stable than its complex symmetric counterpart; (b) no complex absorbing potential or real damping operator is required, saving much of the exterior grid space which is commonly needed to support these operators and also removing the associated parameter dependence. Test calculations are presented for the collinear H+H-2 reaction, revealing excellent performance characteristics. (C) 2004 American Institute of Physics.
Resumo:
We present a first-principles density-functional calculation for the Raman spectra of a neutral BEDT-TTF molecule. Our results are in excellent agreement with experimental results. We show that a planar Structure is not a stable state of a neutral BEDT-TTF molecule. We consider three possible conformations and discuss their relation to disorder in these systems.
Resumo:
In this paper, we present the results of the prediction of the high-pressure adsorption equilibrium of supercritical. gases (Ar, N-2, CH4, and CO2) on various activated carbons (BPL, PCB, and Norit R1 extra) at various temperatures using a density-functional-theory-based finite wall thickness (FWT) model. Pore size distribution results of the carbons are taken from our recent previous work 1,2 using this approach for characterization. To validate the model, isotherms calculated from the density functional theory (DFT) approach are comprehensively verified against those determined by grand canonical Monte Carlo (GCMC) simulation, before the theoretical adsorption isotherms of these investigated carbons calculated by the model are compared with the experimental adsorption measurements of the carbons. We illustrate the accuracy and consistency of the FWT model for the prediction of adsorption isotherms of the all investigated gases. The pore network connectivity problem occurring in the examined carbons is also discussed, and on the basis of the success of the predictions assuming a similar pore size distribution for accessible and inaccessible regions, it is suggested that this is largely related to the disordered nature of the carbon.
Resumo:
We present a new version of non-local density functional theory (NL-DFT) adapted to description of vapor adsorption isotherms on amorphous materials like non-porous silica. The novel feature of this approach is that it accounts for the roughness of adsorbent surface. The solid–fluid interaction is described in the same framework as in the case of fluid–fluid interactions, using the Weeks–Chandler–Andersen (WCA) scheme and the Carnahan–Starling (CS) equation for attractive and repulsive parts of the Helmholtz free energy, respectively. Application to nitrogen and argon adsorption isotherms on non-porous silica LiChrospher Si-1000 at their boiling points, recently published by Jaroniec and co-workers, has shown an excellent correlative ability of our approach over the complete range of pressures, which suggests that the surface roughness is mostly the reason for the observed behavior of adsorption isotherms. From the analysis of these data, we found that in the case of nitrogen adsorption short-range interactions between oxygen atoms on the silica surface and quadrupole of nitrogen molecules play an important role. The approach presented in this paper may be further used in quantitative analysis of adsorption and desorption isotherms in cylindrical pores such as MCM-41 and carbon nanotubes.
Resumo:
Density functional theory (DFT) is a powerful approach to electronic structure calculations in extended systems, but suffers currently from inadequate incorporation of long-range dispersion, or Van der Waals (VdW) interactions. VdW-corrected DFT is tested for interactions involving molecular hydrogen, graphite, single-walled carbon nanotubes (SWCNTs), and SWCNT bundles. The energy correction, based on an empirical London dispersion term with a damping function at short range, allows a reasonable physisorption energy and equilibrium distance to be obtained for H-2 on a model graphite surface. The VdW-corrected DFT calculation for an (8, 8) nanotube bundle reproduces accurately the experimental lattice constant. For H-2 inside or outside an (8, 8) SWCNT, we find the binding energies are respectively higher and lower than that on a graphite surface, correctly predicting the well known curvature effect. We conclude that the VdW correction is a very effective method for implementing DFT calculations, allowing a reliable description of both short-range chemical bonding and long-range dispersive interactions. The method will find powerful applications in areas of SWCNT research where empirical potential functions either have not been developed, or do not capture the necessary range of both dispersion and bonding interactions.
Resumo:
Backbone-cyclized proteins are becoming increasingly well known, although the mechanism by which they are processed from linear precursors is poorly understood. In this report the sequence and structure of the linear precursor of a cyclic trypsin inhibitor, sunflower trypsin inhibitor 1 (SFTI-1) from sunflower seeds, is described. The structure indicates that the major elements of the reactive site loop of SFTI-1 are present before processing. This may have importance for a protease-mediated cyclizing reaction as the rigidity of SFTI-1 may drive the equilibrium of the reaction catalyzed by proteolytic enzymes toward the formation of a peptide bond rather than the normal cleavage reaction. The occurrence of residues in the SFTI-1 precursor susceptible to cleavage by asparaginyl proteases strengthens theories that involve this enzyme in the processing of SFTI-1 and further implicates it in the processing of another family of plant cyclic proteins, the cyclotides. The precursor reported here also indicates that despite strong active site sequence homology, SFTI-1 has no other similarities with the Bowman-Birk trypsin inhibitors, presenting interesting evolutionary questions.
Resumo:
The concept of a monotone family of functions, which need not be countable, and the solution of an equilibrium problem associated with the family are introduced. A fixed-point theorem is applied to prove the existence of solutions to the problem.
Resumo:
This paper presents a thermodynamic analysis of capillary condensation phenomena in cylindrical pores. Here, we modified the Broekhoff and de Boer (BdB) model for cylindrical pores accounting for the effect of the pore radius on the potential exerted by the pore walls. The new approach incorporates the recently published standard nitrogen and argon adsorption isotherm on nonporous silica LiChrospher Si-1000. The developed model is tested against the nonlocal density functional theory (NLDFT), and the criterion for this comparison is the condensation/evaporation pressure versus the pore diameter. The quantitative agreement between the NLDFT and the refined version of the BdB theory is ascertained for pores larger than 2 nm. The modified BdB theory was applied to the experimental adsorption branch of adsorption isotherms of a number of MCM-41 samples to determine their pore size distributions (PSDs). It was found that the PSDs determined with the new BdB approach coincide with those determined with the NLDFT (also using the experimental adsorption branch). As opposed to the NLDFT, the modified BdB theory is very simple in its utilization and therefore can be used as a convenient tool to obtain PSDs of all mesoporous solids from the analysis of the adsorption branch of adsorption isotherms of any subcritical fluids.