57 resultados para Electrochemical activation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: (a) To compare the magnitude of gluteus medius and tensor fascia lata activation between a group of subjects with clinical unilateral hip osteoarthritis and a group of healthy older adults. (b) To compare the magnitude of activation of the gluteus medius and tensor fascia lata between sides in a group of subjects with clinical unilateral hip osteoarthritis and a group of healthy older adults. Methods: 19 subjects with clinical unilateral hip osteoarthritis and 19 healthy controls were investigated. The subjects performed a stepping task during which recordings were obtained using surface electromyograms from the hip abductors, and kinetic data were obtained from a dual force platform. Results: Subjects with clinical hip osteoarthritis had higher gluteus medius activation than the healthy older adults (p=0.037). In addition, there were no differences in the magnitude of gluteus medius activation between the sides (p=0.733). There was no difference in the force platform data between the groups (p=0.078). Conclusions: The increased magnitude of gluteus medius activation in the group with hip osteoarthritis is evidence of a muscular dysfunction associated with hip disease. This has implications for the progressive nature of the disease and for its conservative management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural and surface property changes of macadamia nut-shell (MNS) char upon activation and high temperature treatment (HTT) were studied by high-resolution nitrogen adsorption, diffuse reflectance infra-red Fourier transform spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption. It is found that activation of MNS char can be divided into the low extent activation which may involve the reactions of internal oxygen-containing groups and leads to the formation of comparatively uniform micropores, and the high extent activation which induces reactions between carbon and activating gas and produces a large amount of micropores. The surface functional groups (SFGs) basically increase with the increase of activation extent, but high extent activation preferentially increases the amount of -C-O and -C=O. HTT in air for a short tithe at a high temperature (1173 K) greatly increases the micropore volume and the amounts of SFGs. By appropriately choosing the activation and HTT conditions, it is possible to control both the textural structure and the type and amounts of SFG. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteinase-activated receptor (PAR) type 2 (PAR-2) has been shown to mediate ion secretion in cultured epithelial cells and rat jejunum. With the use of a microUssing chamber, we demonstrate the role of PAR-2 for ion transport in native human colonic mucosa obtained from 30 normal individuals and 11 cystic fibrosis (CF) patients. Trypsin induced Cl- secretion when added to the basolateral but not luminal side of normal epithelia. Activation of Cl- secretion by trypsin was inhibited by indomethacin and was further increased by cAMP in normal tissues but was not present in CF colon, indicating the requirement of luminal CF transmembrane conductance regulator. Effects of trypsin were largely reduced by low Cl-,by basolateral bumetanide, and in the presence of barium or clotrimazole, but not by tetrodotoxin. Furthermore, trypsin-induced secretion was inhibited by the Ca2+-ATPase inhibitor cyclopiazonic acid and in low-Ca2+ buffer. The effects of trypsin were almost abolished by trypsin inhibitor. Thrombin, an activator of PAR types 1, 3, and 4, had no effects on equivalent short-circuit currents. The presence of PAR-2 in human colon epithelium was confirmed by RT-PCR and additional experiments with PAR-2-activating peptide. PAR-2-mediated intestinal electrolyte secretion by release of mast cell tryptase and potentiation of PAR-2 expression by tumor necrosis factor-alpha may contribute to the hypersecretion observed in inflammatory processes such as chronic inflammatory bowel disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of cyclin B-Cdc2 is an absolute requirement for entry into mitosis, but other protein kinase pathways that also have mitotic functions are activated during G(2)/M progression. The MAPK cascade has well established roles in entry and exit from mitosis in Xenopus, but relatively little is known about the regulation and function of this pathway in mammalian mitosis. Here we report a detailed analysis of the activity of all components of the Ras/Raf/MEK/ERK pathway in HeLa cells during normal G(2)/M. The focus of this pathway is the dramatic activation of an endomembrane-associated MEK1 without the corresponding activation of the MEK substrate ERK. This is because of the uncoupling of MEK1 activation from ERK activation. The mechanism of this uncoupling involves the cyclin B-Cdc2-dependent proteolytic cleavage of the N-terminal ERK-binding domain of MEK1 and the phosphorylation of Thr(286). These results demonstrate that cyclin B-Cdc2 activity regulates signaling through the MAPK pathway in mitosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: For treatment of various knee disorders, muscles are trained in open or closed kinetic chain tasks. Coordination between the heads of the quadriceps muscle is important for stability and optimal joint loading for both the tibiofemoral and the patellofemoral joint. The aim of this study was to examine whether the quadriceps femoris muscles are activated differently in open versus closed kinetic chain tasks. Methods: Ten healthy men and women (mean age 28.5 +/- 0.7) extended the knees isometrically in open and closed kinetic chain tasks in a reaction time paradigm using moderate force. Surface electromyography (EMG) recordings were made from four different parts of the quadriceps muscle. The onset and amplitude of EMG and force data were measured. Results: In closed chain knee extension, the onset of EMG activity of the four different muscle portions of the quadriceps was more simultaneous than in the open chain. In open chain, rectus femoris (RF) had the earliest EMG onset while vastus medialis obliquus was activated last (7 +/- 13 ms after RF EMG onset) and with smaller amplitude (40 +/- 30% of maximal voluntary contraction (MVC)) than in closed chain (46 +/- 43% MVC). Conclusions: Exercise in closed kinetic chain promotes more balanced initial quadriceps activation than does exercise in open kinetic chain. This may be of importance in designing training programs aimed toward control of the patellofemoral joint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of macrophages with lipopolysaccharide (LPS) induces the rapid synthesis and secretion of proinflammatory cytokines, such as tumor necrosis factor (TNFalpha), for priming the immune response [1, 2]. TNFalpha plays a key role in inflammatory disease [3]; yet, little is known of the intracellular trafficking events leading to its secretion. In order to identify molecules involved in this secretory pathway, we asked whether any of the known trafficking proteins are regulated by LPS. We found that the levels of SNARE proteins were rapidly and significantly up- or downregulated during macrophage activation. A subset of t-SNAREs (Syntaxin 4/SNAP23/Munc18c) known to control regulated exocytosis in other cell types [4, 5] was substantially increased by LPS in a temporal pattern coinciding with peak TNFalpha secretion. Syntaxin 4 formed a complex with Munc18c at the cell surface of macrophages. Functional studies involving the introduction of Syntaxin 4 cDNA or peptides into macrophages implicate this t-SNARE in a rate-limiting step of TNFalpha secretion and in membrane ruffling during macrophage activation. We conclude that in macrophages, SNAREs are regulated in order to accommodate the rapid onset of cytokine secretion and for membrane traffic associated with the phenotypic changes of immune activation. This represents a novel regulatory role for SNAREs in regulated secretion and in macrophage-mediated host defense.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the role of beta subunits in the activation of alphabeta heteromeric glycine receptor (GlyR) chloride channels recombinantly expressed in HEK293 cells. The approach involved incorporating mutations into corresponding positions in alpha and beta subunits and comparing their effects on receptor function. Although cysteine-substitution mutations to residues in the N-terminal half of the alpha subunit M2-M3 loop dramatically impaired the gating efficacy, the same mutations exerted little effect when incorporated into corresponding positions of the beta subunit. Furthermore, although the alpha subunit M2-M3 loop cysteines were modified by a cysteine-specific reagent, the corresponding beta subunit cysteines showed no evidence of reactivity. These observations suggest structural or functional differences between alpha and beta subunit M2-M3 loops. In addition, a threonine-->leucine mutation at the 9' position in the beta subunit M2 pore-lining domain dramatically increased the glycine sensitivity. By analogy with the effects of the same mutation in other ligand-gated ion channels, it was concluded that the mutation affected the GlyR activation mechanism. This supports the idea that the GlyR beta subunit is involved in receptor gating. In conclusion, this study demonstrates that beta subunits contribute to the activation of the GlyR, but that their involvement in this process is significantly different to that of the alpha subunit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origin of intracellular Ca2+ concentration ([Ca2+](i)) transients stimulated by nicotinic ( nAChR) and muscarinic ( mAChR) receptor activation was investigated in fura-2-loaded neonatal rat intracardiac neurons. ACh evoked [Ca2+](i) increases that were reduced to similar to 60% of control in the presence of either atropine ( 1 muM) or mecamylamine ( 3 muM) and to < 20% in the presence of both antagonists. Removal of external Ca2+ reduced ACh-induced responses to 58% of control, which was unchanged in the presence of mecamylamine but reduced to 5% of control by atropine. The nAChR-induced [Ca2+](i) response was reduced to 50% by 10 μM ryanodine, whereas the mAChR-induced response was unaffected by ryanodine, suggesting that Ca2+ release from ryanodine-sensitive Ca2+ stores may only contribute to the nAChR-induced [Ca2+](i) responses. Perforated-patch whole cell recording at - 60 mV shows that the rise in [Ca2+](i) is concomitant with slow outward currents on mAChR activation and with rapid inward currents after nAChR activation. In conclusion, different signaling pathways mediate the rise in [Ca2+](i) and membrane currents evoked by ACh binding to nicotinic and muscarinic receptors in rat intracardiac neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NOR-1/NR4A3 is an orphan member of the nuclear hormone receptor superfamily. NOR-1 and its close relatives Nurr1 and Nur77 are members of the NR4A subgroup of nuclear receptors. Members of the NR4A subgroup are induced through multiple signal transduction pathways. They have been implicated in cell proliferation, differentiation, T-cell apoptosis, chondrosarcomas, neurological disorders, inflammation, and atherogenesis. However, the mechanism of transcriptional activation, coactivator recruitment, and agonist-mediated activation remain obscure. Hence, we examined the molecular basis of NOR-1-mediated activation. We observed that NOR-1 trans-activates gene expression in a cell- and target-specific manner; moreover, it operates in an activation function (AF)-1-dependent manner. The N-terminal AF-1 domain delimited to between amino acids 1 and 112, preferentially recruits the steroid receptor coactivator (SRC). Furthermore, SRC-2 modulates the activity of the AF-1 domain but not the C-terminal ligand binding domain (LBD). Homology modeling indicated that the NOR-1 LBD was substantially different from that of hRORbeta, a closely related AF-2-dependent receptor. In particular, the hydrophobic cleft characteristic of nuclear receptors was replaced with a very hydrophilic surface with a distinct topology. This observation may account for the inability of this nuclear receptor LBD to efficiently mediate cofactor recruitment and transcriptional activation. In contrast, the N-terminal AF-1 is necessary for cofactor recruitment and can independently conscript coactivators. Finally, we demonstrate that the purine anti-metabolite 6-mercaptopurine, a widely used antineoplastic and anti-inflammatory drug, activates NOR-1 in an AF-1-dependent manner. Additional 6-mercaptopurine analogs all efficiently activated NOR-1, suggesting that the signaling pathways that modulate proliferation via inhibition of de novo purine and/or nucleic acid biosynthesis are involved in the regulation NR4A activity. We hypothesize that the NR4A subgroup mediates the genotoxic stress response and suggest that this subgroup may function as sensors that respond to genotoxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bituminous coal was pyrolyzed in a nitrogen stream in an entrained flow reactor at various temperatures from 700 to 1475 degreesC. Char samples were collected at different positions along the reactor. Each collected sample was oxidized nonisothermally in a TGA for reactivity determination. The reactivity of the coal char was found to decrease rapidly with residence time until 0.5 s, after which it decreased only slightly. On the bases of the reactivity data at various temperatures, a new approach was utilized to obtaining the true activation energy distribution function for thermal annealing without the assumption of any distribution function form or a constant preexponential factor. It appears that the true activation energy distribution function consists of two separate parts corresponding to different temperature ranges, suggesting different mechanisms in different temperature ranges. Partially burnt coal chars were also collected along the reactor when the coal was oxidized in air at various temperatures from 700 to 1475 degreesC. The collected samples were analyzed for the residual carbon content and the specific reaction rate was estimated. The characteristic time of thermal deactivation was compared with that of oxidation under realistic conditions. The characteristic times were found to be close to each other, indicating the importance of thermal deactivation during combustion of the coal studied.