47 resultados para Electric charge and distribution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activated sludge floes are a flocculated mass of microorganisms, extracellular polymeric substances (EPS) and adsorbed organic and inorganic material. The structure of the floes is very heterogeneous and floes with very different properties and morphologies may occur, depending on the conditions in the activated sludge treatment plant and wastewater composition. Present thinking suggests that cations, such as calcium, create cationic bridges with EPS excreted by the bacteria and thereby hold the various floe constituents together. However, due to the complex and heterogeneous nature of activated sludge, the mechanisms have neither been thoroughly investigated nor successfully quantified. A better understanding and description of the biological flocculation process is necessary in order to establish more efficient operational strategies. The main aim of this study was to get a comprehensive and unique insight into the floe properties of activated sludge and to assess the relative impact of chemical and physical parameters. A variety of sludges from full scale treatment plants with different settling properties were characterised. The interrelationships between floe parameters such as composition of EPS, surface properties and floe structure, and their effect on the flocculation and separation properties were assessed. The results indicate that the EPS, both in terms of quantity and quality, are very important for the floe properties of the activated sludge. However, presence of filaments may alter the physical properties of the floes considerably. The EPS showed positive correlations to sludge volume index (SVI) if only sludges with low or moderate numbers of filaments were included. The surface properties were more affected by the composition of the EPS than by the number of filaments. The EPS showed positive correlation to negative surface charge and a negative correlation to relative hydrophobicity and flocculation ability. The negative correlation between flocculation ability and amount of EPS was surprising. The shear sensitivity, measured as degree of erosion of floes when subjected to shear, was more affected by floe size and number of filaments than amount of EPS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies have revealed regional variation in the density and distribution of inhibitory neurons in different cortical areas, which are thought to reflect area-specific specializations in cortical circuitry. However, there are as yet few standardized quantitative data regarding how the inhibitory circuitry in prefrontal cortex (PFC), which is thought to be involved in executive functions such as cognition, emotion and decision making, compares to that in other cortical areas. Here we used immunohistochemical techniques to determine the density and distribution of parvalbumin (PV)-, calbindin (CB)-, and calretinin (CR)-immunoreactive (ir) neurons and axon terminals in the dorsolateral and orbital PFC of the owl monkey (Aotus trivirgatus), and compared them directly with data obtained using the same techniques in 11 different visual, somatosensory and motor areas. We found marked differences in the density of PV-ir, CB-ir, and CR-ir interneurons in several cortical areas. One hundred and twenty eight of all 234 possible between-area pairwise comparisons were significantly different. The density of specific subpopulations of these cells also varied among cortical areas, as did the density of axon terminals. Comparison of PFC with other cortical areas revealed that 40 of all 66 possible statistical comparisons of the density of PV-ir, CB-ir, and CR-ir cells were significantly different. We also found evidence for heterogeneity in the pattern of labeling of PV-ir, CB-ir, and CR-ir cells and axon terminals between the dorsolateral and orbital subdivisions of PFC. These data are likely to reflect basic differences in interneuron circuitry, which are likely to influence inhibitory function in the cortex. Copyright (C) 2003 S. Karger AG, Basel.