50 resultados para Demographic Dynamic
Resumo:
A decision theory framework can be a powerful technique to derive optimal management decisions for endangered species. We built a spatially realistic stochastic metapopulation model for the Mount Lofty Ranges Southern Emu-wren (Stipiturus malachurus intermedius), a critically endangered Australian bird. Using diserete-time Markov,chains to describe the dynamics of a metapopulation and stochastic dynamic programming (SDP) to find optimal solutions, we evaluated the following different management decisions: enlarging existing patches, linking patches via corridors, and creating a new patch. This is the first application of SDP to optimal landscape reconstruction and one of the few times that landscape reconstruction dynamics have been integrated with population dynamics. SDP is a powerful tool that has advantages over standard Monte Carlo simulation methods because it can give the exact optimal strategy for every landscape configuration (combination of patch areas and presence of corridors) and pattern of metapopulation occupancy, as well as a trajectory of strategies. It is useful when a sequence of management actions can be performed over a given time horizon, as is the case for many endangered species recovery programs, where only fixed amounts of resources are available in each time step. However, it is generally limited by computational constraints to rather small networks of patches. The model shows that optimal metapopulation, management decisions depend greatly on the current state of the metapopulation,. and there is no strategy that is universally the best. The extinction probability over 30 yr for the optimal state-dependent management actions is 50-80% better than no management, whereas the best fixed state-independent sets of strategies are only 30% better than no management. This highlights the advantages of using a decision theory tool to investigate conservation strategies for metapopulations. It is clear from these results that the sequence of management actions is critical, and this can only be effectively derived from stochastic dynamic programming. The model illustrates the underlying difficulty in determining simple rules of thumb for the sequence of management actions for a metapopulation. This use of a decision theory framework extends the capacity of population viability analysis (PVA) to manage threatened species.
Resumo:
Measurement of exchange of substances between blood and tissue has been a long-lasting challenge to physiologists, and considerable theoretical and experimental accomplishments were achieved before the development of the positron emission tomography (PET). Today, when modeling data from modern PET scanners, little use is made of earlier microvascular research in the compartmental models, which have become the standard model by which the vast majority of dynamic PET data are analysed. However, modern PET scanners provide data with a sufficient temporal resolution and good counting statistics to allow estimation of parameters in models with more physiological realism. We explore the standard compartmental model and find that incorporation of blood flow leads to paradoxes, such as kinetic rate constants being time-dependent, and tracers being cleared from a capillary faster than they can be supplied by blood flow. The inability of the standard model to incorporate blood flow consequently raises a need for models that include more physiology, and we develop microvascular models which remove the inconsistencies. The microvascular models can be regarded as a revision of the input function. Whereas the standard model uses the organ inlet concentration as the concentration throughout the vascular compartment, we consider models that make use of spatial averaging of the concentrations in the capillary volume, which is what the PET scanner actually registers. The microvascular models are developed for both single- and multi-capillary systems and include effects of non-exchanging vessels. They are suitable for analysing dynamic PET data from any capillary bed using either intravascular or diffusible tracers, in terms of physiological parameters which include regional blood flow. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Children of parents with mental illness have an increased risk of psychological problems. The aim of this study was to identify the demographic characteristics of dependent children of adults presenting at mental health clinics in Western Australia. A survey of clients who attended the clinics indicated that half reported having had children. Of these, 21% had a primary diagnosis of schizophrenia. Although schizophrenia was the most common illness, there were almost seven times more children living with a parent with a primary diagnosis of depression than schizophrenia. Recommendations include that children of clients with mental illness be included as part of a wider client focus.
Resumo:
This paper conducts a dynamic stability analysis of symmetrically laminated FGM rectangular plates with general out-of-plane supporting conditions, subjected to a uniaxial periodic in-plane load and undergoing uniform temperature change. Theoretical formulations are based on Reddy's third-order shear deformation plate theory, and account for the temperature dependence of material properties. A semi-analytical Galerkin-differential quadrature approach is employed to convert the governing equations into a linear system of Mathieu-Hill equations from which the boundary points on the unstable regions are determined by Bolotin's method. Free vibration and bifurcation buckling are also discussed as subset problems. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with FGM layers made of silicon nitride and stainless steel. The influences of various parameters such as material composition, layer thickness ratio, temperature change, static load level, boundary constraints on the dynamic stability, buckling and vibration frequencies are examined in detail through parametric studies.