47 resultados para Decomposition Of Rotation
Resumo:
A G-design of order n is a pair (P,B) where P is the vertex set of the complete graph K-n and B is an edge-disjoint decomposition of K-n into copies of the simple graph G. Following design terminology, we call these copies ''blocks''. Here K-4 - e denotes the complete graph K-4 with one edge removed. It is well-known that a K-4 - e design of order n exists if and only if n = 0 or 1 (mod 5), n greater than or equal to 6. The intersection problem here asks for which k is it possible to find two K-4 - e designs (P,B-1) and (P,B-2) of order n, with \B-1 boolean AND B-2\ = k, that is, with precisely k common blocks. Here we completely solve this intersection problem for K-4 - e designs.
Resumo:
A new method is presented to determine an accurate eigendecomposition of difficult low temperature unimolecular master equation problems. Based on a generalisation of the Nesbet method, the new method is capable of achieving complete spectral resolution of the master equation matrix with relative accuracy in the eigenvectors. The method is applied to a test case of the decomposition of ethane at 300 K from a microcanonical initial population with energy transfer modelled by both Ergodic Collision Theory and the exponential-down model. The fact that quadruple precision (16-byte) arithmetic is required irrespective of the eigensolution method used is demonstrated. (C) 2001 Elsevier Science B.V. All rights reserved.