51 resultados para Cotyledon reserve
Resumo:
Within the skeletal muscle cell at the onset of muscular contraction, phosphocreatine (PCr) represents the most immediate reserve for the rephosphorylation of adenosine triphosphate (ATP). As a result, its concentration can be reduced to less than 30% of resting levels during intense exercise. As a fall in the level of PCr appears to adversely affect muscle contraction, and therefore power output in a subsequent bout, maximising the rate of PCr resynthesis during a brief recovery period will be of benefit to an athlete involved in activities which demand intermittent exercise. Although this resynthesis process simply involves the rephosphorylation of creatine by aerobically produced ATP (with the release of protons), it has both a fast and slow component, each proceeding at a rate that is controlled by different components of the creatine kinase equilibrium. The initial fast phase appears to proceed at a rate independent of muscle pH. Instead, its rate appears to be controlled by adenosine diphosphate (ADP) levels; either directly through its free cytosolic concentration, or indirectly, through its effect on the free energy of ATP hydrolysis. Once this fast phase of recovery is complete, there is a secondary slower phase that appears almost certainly rate-dependant on the return of the muscle cell to homeostatic intracellular pH. Given the importance of oxidative phosphorylation in this resynthesis process, those individuals with an elevated aerobic power should be able to resynthesise PCr at a more rapid rate than their sedentary counterparts. However, results from studies that have used phosphorus nuclear magnetic resonance (P-31-NMR) spectroscopy, have been somewhat inconsistent with respect to the relationship between aerobic power and PCr recovery following intense exercise. Because of the methodological constraints that appear to have limited a number of these studies, further research in this area is warranted.
Resumo:
Concentrations of 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) were determined in 14 sediment samples collected from four sites in the Mai Po Marshes Nature Reserve (within a RAMSAR Site) and from another six sites in Victoria Harbour and along the Hong Kong coastline. Elevated levels of PCDDs, and particularly OCDD, were detectable in all samples collected from the Mai Po Marshes and five of the six sites. In contrast to PCDDs, PCDFs were mainly found in sediment samples collected from industrial areas (Kwun Tong and To Kwa Wan) in Victoria Harbour. PCDD/F levels and congener profiles in the samples from the Mai Po Marshes Nature Reserve in particular show strong similarities to those reported in studies which have attributed similar elevated PCDD concentrations to nonanthropogenic PCDD sources. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The objective of this study was to determine the responsiveness, affinity constants and beta-adrenoceptor reserves for isoprenaline on the isolated aorta in the maturation of normotensive and hypertensive rats. The effects of a very slowly reversible antagonist, bromoacetylalprenololmenthane (BAAM), on the relaxant responses of the aortae of 5- and 14-week-old Wistar Kyoto normotensive rats (WKY) and spontaneously hypertensive rats (SHRs) to isoprenaline were determined. Five-week-old SHRs are pre-hypertensive and the aortic rings are less responsive to isoprenaline than age-matched WKY (pD(2) values: WKY, 8.40; SHRs, 8.03). Similar relaxant responses to forskolin were obtained on the aortae of 5- and 14-week-old WKY and SHRs. The K-A value for isoprenaline at the aortic beta(2)-adrenoceptors of the 5-week-old WKY was 2.1 x 10(-7) M, and similar values were obtained on the aortae of 5-week-old SHR and 14-week-old WKY and SHRs. In the maturation of the WKY aortae from 5 to 14 weeks, there was a reduction in the maximum response, a major loss of sensitivity and a loss of 2-adrenoceptor reserve for isoprenaline. On 5-week-old SHR aorta, the sensitivity to isoprenaline was 2.5-fold lower, and the beta(2)-adrenoceptor reserve was less than on age-matched WKY. In the development of hypertension on the SHR aorta from 5 to 14 weeks, there was a reduction in the maximum response to isoprenaline. At 14 weeks, the sensitivity and the 2-adrenoceptor reserve to isoprenaline were similar, but the maximum responses were lower on the SHR than WKY. As there are differences in pre-hypertensive SHR and age-matched WKY aortic responses to isoprenaline, it is no longer valid to consider that the loss of responsiveness to isoprenaline in hypertension is solely owing to the hypertension. There are no changes in affinity, but major changes in the sensitivity, maximum responses and aortic beta(2)-adrenoceptor reserves to isoprenaline in the maturation of normotensive and pre-hypertensive aortae.
Resumo:
Several schemes have been developed to help select the locations of marine reserves. All of them combine social, economic, and biological criteria, and few offer any guidance as to how to prioritize among the criteria identified. This can imply that the relative weights given to different criteria are unimportant. Where two sites are of equal value ecologically; then socioeconomic criteria should dominate the choice of which should be protected. However, in many cases, socioeconomic criteria are given equal or greater weight than ecological considerations in the choice of sites. This can lead to selection of reserves with little biological value that fail to meet many of the desired objectives. To avoid such a possibility, we develop a series of criteria that allow preliminary evaluation of candidate sites according to their relative biological values in advance of the application of socioeconomic criteria. We include criteria that,. while not strictly biological, have a strong influence on the species present or ecological processes. Out scheme enables sites to be assessed according to their biodiversity, the processes which underpin that diversity, and the processes that support fisheries and provide a spectrum of other services important to people. Criteria that capture biodiversity values include biogeographic representation, habitat representation and heterogeneity, and presence of species or populations of special interest (e.g., threatened species). Criteria that capture sustainability of biodiversity and fishery values include the size of reserves necessary to protect viable habitats, presence of exploitable species, vulnerable life stages, connectivity among reserves, links among ecosystems, and provision of ecosystem services to people. Criteria measuring human and natural threats enable candidate sites to be eliminated from consideration if risks are too great, but also help prioritize among sites where threats can be mitigated by protection. While our criteria can be applied to the design of reserve networks, they also enable choice of single reserves to be made in the context of the attributes of existing protected areas. The overall goal of our scheme is to promote the development of reserve networks that will maintain biodiversity and ecosystem functioning at large scales. The values of eco-system goods and services for people ultimately depend on meeting this objective.
Resumo:
The ultrastructure of pecans was investigated using light microscopy, environmental scanning electron microscopy, scanning electron microscopy, and transmission electron microscopy. Specific methodology for the sample preparation of pecans for electron microscopy investigations was developed. Electron microscopy of the ultrastructure of opalescent (discoloration of the interior) and nonopalescent kernels revealed that cellular damage was occurring in opalescent kernels. The damage was due to cell wall and membrane rupture, which accounted for the release of oil throughout the kernel. This rupture is due to the lower level of calcium in the cell membranes of opalescent pecans, as shown by energy dispersive X-ray spectrometry, making them more susceptible to damage.