122 resultados para Coral reef biology


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cleaner fish, Labroides dimidiatus, prefer the mucus of the parrotfish, Chlorurus sordidus, to parasitic gnathiid isopods, the main items in their diet, indicating a major conflict between clients and cleaners over what the latter should eat during interactions. We tested whether the conflict varied with client species (and the quality of its mucus) and with the presence of blood in the gnathfids. First, we offered cleaners the choice between mucus of the parrotfish and that of the snapper, Lutjanus fulviflamma. When offered equal amounts of mucus on Plexiglas plates, cleaners readily developed a significant preference for the parrotfish mucus. Reducing the amount of parrotfish mucus by 75% made the preference disappear. In a second test, we offered the cleaners gnathiids that were or were not engorged with client fish blood. Cleaners showed no significant preference for either food item. Our results suggest that the degree of conflict between cleaners and clients may vary between species, depending on whether the latter have a preferred mucus. In contrast, the cleaners' lack of preference for engorged gnathiids benefits clients because it means that cleaners do not hesitate to eat unengorged gnathiids before the gnathiids harm the fish by removing blood or by transmitting blood parasites. (C) 2004 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adult bucephalid trematodes (Digenea) generally only occur in piscivorous fish. Within labrid fishes they are very rare, however, we have found them in labrid cleaner fish that feed on the ectoparasites of fish. We surveyed 969 labrid fishes from the tropical Pacific and found bucephalids only in cleaners (Lahroides dimidiatus, L. bicolor, and Bodianus axillaris) and none in piscivores. The prevalences of bucephalids in L. dimidiatus at Lizard Island, Heron Island, Orpheus Island (all on the Great Barrier Reef), New Caledonia, and Moorea (French Polynesia) were 51, 47, 67, 56, and 67%, respectively. All of the L. bicolor examined from Moorea were infected. Bucephalids were highly prevalent in all size classes of L. dimidiatus from Lizard Island. Bucephalids were found in a 1.6-cm long juvenile L. dimidiatus, in which, piscivory is highly unlikely. We examined the literature on the worldwide bucephalid fauna in labrids and all hosts were found to be cleaners (Symphodus tinca, S. mediterraneus, L. dimidiatus, L. bicolor, and Bodianus axillaris) except Notolabrus parilus, whose ecology is unknown. We suggest that cleaners eat bucephalid metacercariae directly from the exterior surface of client fish during cleaning interactions. This is the first evidence of digeneans in the diet of L. dimidiatus, and the first study to show this novel form of parasite transmission where infective stages are eaten as a result of cleaning behaviour. Cleaning-mediated parasite transmission may result in behavioural modification of second intermediate hosts because clients and parasites both benefit from transmission. If the infection is costly to cleaners and acquired during cheating behaviour, then this parasite might regulate mutualism. Alternatively, if infective stages are targeted, infection by these bucephalids may be a negative consequence of an honest foraging strategy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Community-based coastal resource management has been widely applied within the Philippines. However, small-scale community-based reserves are often inefficient owing to management inadequacies arising because of a lack of local support or enforcement or poor design. Because there are many potential pitfalls during the establishment of even small community-based reserves, it is important for coastal managers, communities, and facilitating institutions to have access to a summary of the key factors for success. Reviewing relevant literature, we present a framework of lessons learned during the establishment of protected areas, mainly in the Philippines. The framework contains summary guidance on the importance of (1) an island location, (2) small community population size, (3) minimal effect of land-based development, (4) application of a bottom-up approach, (5) an external facilitating institution, (6) acquisition of title, (7) use of a scientific information database, (8) stakeholder involvement, (9) the establishment of legislation, (10) community empowerment, (11) alternative livelihood schemes, (12) surveillance, (13) tangible management results, (14) continued involvement of external groups after reserve establishment, and (15) small-scale project expansion. These framework components guided the establishment of a community-based protected area at Danjugan Island, Negros Occidental, Philippines. This case study showed that the framework was a useful guide that led to establishing and implementing a community-based marine reserve. Evaluation of the reserve using standard criteria developed for the Philippines shows that the Danjugan Island protected area can be considered successful and sustainable. At Danjugan Island, all of the lessons synthesized in the framework were important and should be considered elsewhere, even for relatively small projects. As shown in previous projects in the Philippines, local involvement and stewardship of the protected area appeared particularly important for its successful implementation. The involvement of external organizations also seemed to have a key role in the success of the Danjugan Island project by guiding local decision-makers in the sociobiological principles of establishing protected areas. However, the relative importance of each component of the framework will vary between coastal management initiatives both within the Philippines and across the wider Asian region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Monitoring of marine reserves has traditionally focused on the task of rejecting the null hypothesis that marine reserves have no impact on the population and community structure of harvested populations. We consider the role of monitoring of marine reserves to gain information needed for management decisions. In particular we use a decision theoretic framework to answer the question: how long should we monitor the recovery of an over-fished stock to determine the fraction of that stock to reserve? This exposes a natural tension between the cost (in terms of time and money) of additional monitoring, and the benefit of more accurately parameterizing a population model for the stock, that in turn leads to a better decision about the optimal size for the reserve with respect to harvesting. We found that the optimal monitoring time frame is rarely more than 5 years. A higher economic discount rate decreased the optimal monitoring time frame, making the expected benefit of more certainty about parameters in the system negligible compared with the expected gain from earlier exploitation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This Study describes the community of all metazoan parasites from 14 individuals of thicklip wrasse, Hemigymnus melapterus, from Lizard Island, Australia. All fish were parasitized, and 4,649 parasite individuals were found. Twenty-six parasite species were identified although only 6 species were abundant and prevalent: gnathiid isopods, the copepod Hatschekia hemigymni, the digenean Callohelmis pichelinae, and 3 morphotypes of tetraphyllidean cestode larvae. We analyzed whether the body size and microhabitat of the parasites and size of the host affected understanding of the structure of the parasite community. We related the abundance, biovolume, and density of parasites with the host body size and analyzed the abundances and volumetric densities of some parasite species within microhabitats. Although the 2 most abundant species comprised 75% of all parasite individuals, 4 species, each in similar proportion, comprised 85% of the total biovolume. Although larger host individuals had higher richness, abundance, and biovolume of parasites than smaller individuals, overall parasite volumetric density actually decreased with the host body size. Moreover. parasites exhibited abundances and densities significantly different among microhabitats; some parasite species depended on the area available, whereas others selected a specific microhabitat. Parasite and habitat size exhibited interesting relationships that should be considered more frequently. Considerations of these parameters improve understanding of parasite community structure and how the parasites use their habitats.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A survey of Pacific coral reef fishes for sanguinicolids revealed that two species of Lutjanidae (Lutjanus argentimaculatus, L. bohar), six species of Siganidae (Siganus corallinus, S. fuscescens, S. lineatus, S. margaritiferus, S. punctatus, S. vulpinus), seven species of Chaetodontidae (Chaetodon aureofasciatus, C. citrinellus, C. flavirostris, C. lineolatus, C. reticulatus, C. ulietensis, C. unimaculatus), three species of Scombridae (Euthynnus affinis, Scomberomorus commerson, S. munroi) and three species of Scaridae (Chlorurus microrhinos, Scarus frenatus, S. ghobban) were infected with morphologically similar sanguinicolids. These flukes have a flat elliptical body, a vestigial oral sucker, a single testis, separate genital pores and a post-ovarian uterus. However, these species clearly belong in two genera based on the position of the testis and genital pores. Sanguinicolids from Lutjanidae, Siganidae, Chaetodontidae and Scombridae belong in Cardicola Short, 1953; the testis originates anteriorly to, or at the anterior end of, the intercaecal field and does not extend posteriorly to it, the male genital pore opens laterally to the sinistral lateral nerve chord and the female pore opens near the level of the ootype ( may be anterior, lateral or posterior to it) antero-dextral to the male pore. Those from Scaridae are placed in a new genus, Braya; the testis originates near the posterior end of the intercaecal field and extends posteriorly to it, the male pore opens medially at the posterior end of the body and the female pore opens posterior to the ootype, antero-sinistral to the male pore. The second internal transcribed spacer (ITS2) of ribosomal DNA from these sanguinicolids and a known species, Cardicola forsteri Cribb, Daintith & Munday, 2000, were sequenced, aligned and analysed to test the distinctness of the putative new species. Results from morphological comparisons and molecular analyses suggest the presence of 18 putative species; 11 are described on the basis of combined morphological and molecular data and seven are not because they are characterised solely by molecular sequences or to few morphological specimens (n= one). There was usually a correlation between levels of morphological and genetic distinction in that pairs of species with the greatest genetic separation were also the least morphologically similar. The exception in this regard was the combination of Cardicola tantabiddii n. sp. from S. fuscescens from Ningaloo Reef ( Western Australia) and Cardicola sp. 2 from the same host from Heron Island ( Great Barrier Reef). These two parasite/ host/location combinations had identical ITS2 sequences but appeared to differ morphologically ( however, this could simply be due to a lack of morphological material for Cardicola sp. 2). Only one putative species ( Cardicola sp. 1) was found in more than one location; most host species harboured distinct species in each geographical location surveyed ( for example, S. corallinus from Heron and Lizard Islands) and some ( for example, S. punctatus, S. fuscescens and Chlorurus microrhinos) harboured two species at a single location. Distance analysis of ITS2 showed that nine species from siganids, three from scombrids and five from scarids formed monophyletic clades to the exclusion of sanguinicolids from the other host families. Cardicola milleri n. sp. and C. chaetodontis Yamaguti, 1970 from lutjanids and chaetodontids, respectively, were the only representatives from those families that were sequenced. Within the clade formed by sanguinicolids from Siganidae there wasa further division of species; species from the morphologically similar S. fuscescens and S. margaritiferus formed a monophyletic group to the exclusion of sanguinicolids from all other siganid species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Quadrifoliovariinae is revised and three new species of Quadrifoliovarium Yamaguit, 1965 from acanthurid fishes of the genus Naso from waters of the Indo-Pacific are described: Q, maceria n. sp. from N. tonganus, N. annulatus, N. fageni and N. brevirostris; Q. simplex n. sp. from N. tonganus and N. quannulatus; and Q. quattuordecim n. sp. from N. tonganus. Amendments are made to the characterisation of the Quadrifoliovariinae, Quadrifoliovarium, Bilacinia Manter, 1969 and Unilacinia Manter, 1969 in light of observations on type and new material. A molecular phylogeny based on ITS2 and 28S regions of the ribosomal DNA is proposed. The phylogeny suggests that U. asymmetrica is the most basal taxon and Q. simplex n. sp. and Q. quattuordecim n. sp. the most derived. Evolution of morphological traits within the Quadrifoliovariinae are discussed in light of the molecular phylogeny. Molecular sequences of the ITS2 rDNA were identical between specimens of Q. pritchardae collected off Exmouth (Indian Ocean), Heron Island and Lizard Island (Western Pacific) and Moorea (far Eastern Indo-Pacific), indicating a broad Indo-Pacific distribution. All members of the subfamily are recorded only from the acanthurid genus Naso, with the exception of B. lobatum (Yamaguti, 1970), which has been recorded from a pomacanthid. The restricted host range of the group is discussed in the light of the phylogeny of the host genus Naso.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Niche apportionment models have only been applied once to parasite communities. Only the random assortment model (RA), which indicates that species abundances are independent from each other and that interspecific competition is unimportant, provided a good fit to 3 out of 6 parasite communities investigated. The generality of this result needs to be validated, however. In this study we apply 5 niche apportionment models to the parasite communities of 14 fish species from the Great Barrier Reef. We determined which model fitted the data when using either numerical abundance or biomass as an estimate of parasite abundance, and whether the fit of niche apportionment models depends on how the parasite community is defined (e.g. ecto, endoparasites or all parasites considered together). The RA model provided a good fit for the whole community of parasites in 7 fish species when using biovolume (as a surrogate of biomass) as a measure of species abundance. The RA model also fitted observed data when ecto- and endoparasites were considered separately, using abundance or biovolume, but less frequently. Variation in fish sizes among species was not associated with the probability of a model fitting the data. Total numerical abundance and biovolume of parasites were not related across host species, suggesting that they capture different aspects of abundance. Biovolume is not only a better measurement to use with niche-orientated models, it should also be the preferred descriptor to analyse parasite community structure in other contexts. Most of the biological assumptions behind the RA model, i.e. randomness in apportioning niche space, lack of interspecific competition, independence of abundance among different species, and species with variable niches in changeable environments, are in accordance with some previous findings on parasite communities. Thus, parasite communities may generally be unsaturated with species, with empty niches, and interspecific interactions may generally be unimportant in determining parasite community structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Cnidarian - dinoflagellate intracellular symbioses are one of the most important mutualisms in the marine environment. They form the trophic and structural foundation of coral reef ecosystems, and have played a key role in the evolutionary radiation and biodiversity of cnidarian species. Despite the prevalence of these symbioses, we still know very little about the molecular modulators that initiate, regulate, and maintain the interaction between these two different biological entities. In this study, we conducted a comparative host anemone transcriptome analysis using a cDNA microarray platform to identify genes involved in cnidarian - algal symbiosis. Results: We detected statistically significant differences in host gene expression profiles between sea anemones ( Anthopleura elegantissima) in a symbiotic and non-symbiotic state. The group of genes, whose expression is altered, is diverse, suggesting that the molecular regulation of the symbiosis is governed by changes in multiple cellular processes. In the context of cnidarian dinoflagellate symbioses, we discuss pivotal host gene expression changes involved in lipid metabolism, cell adhesion, cell proliferation, apoptosis, and oxidative stress. Conclusion: Our data do not support the existence of symbiosis- specific genes involved in controlling and regulating the symbiosis. Instead, it appears that the symbiosis is maintained by altering expression of existing genes involved in vital cellular processes. Specifically, the finding of key genes involved in cell cycle progression and apoptosis have led us to hypothesize that a suppression of apoptosis, together with a deregulation of the host cell cycle, create a platform that might be necessary for symbiont and/or symbiont-containing host cell survival. This first comprehensive molecular examination of the cnidarian - dinoflagellate associations provides critical insights into the maintenance and regulation of the symbiosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Little is known of the blood parasites of coral reef fishes and nothing of how they are transmitted. We examined 497 fishes from 22 families, 47 genera, and 78 species captured at Lizard Island, Australia, between May 1997 and April 2003 for hematozoa and ectoparasites. We also investigated whether gnathiid isopods might serve as potential vectors of fish hemogregarines. Fifty-eight of 124 fishes caught in March 2002 had larval gnathiid isopods, up to 80 per host fish, and these were identified experimentally to be of 2 types, Gnathia sp. A and Gnathia sp. B. Caligid copepods were also recorded but no leeches. Hematozoa, found in 68 teleosts, were broadly hemogregarines of 4 types and an infection resembling Haemohormidium. Mixed infections (hemogregarine with Haemohormidium) were also observed, but no trypanosomes were detected in blood films. The hemogregarines were identified as Haemogregarina balistapi n. sp., Haemogregarina tetraodontis, possibly Haemogregarina bigemina, and an intraleukocytic hemogregarine of uncertain status. Laboratory-reared Gnathia sp. A larvae, fed experimentally on bruslitail tangs, the latter heavily infected with the H. bigemina-like hemogregarine, contained hemogregarine gamonts and possibly young oocysts up to 3 days postfeeding, but no firm evidence that gnathiids transmit hemogregarines at Lizard Island was obtained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carbonate sediments are dynamic three-dimensional environments where the surface layers are constantly moving and mixing due to the energy of the water column. It is also an environment of dynamic biological, chemical and physical interaction and modification. The biological community can actively influence changes to sediment characteristics and associated biochemistry. Bioturbation resulting from macrofaunal activity disrupts sediment structure and biochemical arrangements and reduces the critical shear forces required to move sediment particles, adding to the dynamic and complex physical and biogeochemical nature of the sediment. Laboratory studies using both planner optodes and glass needle microsensors were used to measure abiotic sediment characteristics such as the depth distribution and concentrations of PAR. The biochemical nature of coral reef sediment were also investigated, specifically the quantification and the distribution of dissolved oxygen within coarse and fine-grained sediments under regimes of light and darkness. Results highlighted the significant contribution microalgal productivity and bioturbation has on distribution of dissolved oxygen in the upper sediment layers. On the reef flat a shallow water lander system was employed to measure concentrations of O2, pH, S, Ca and temperature over periods of 24 to 48 hours in coarse and fine-grained sediments. Similarities between laboratory and in situ results where evident, however the in situ environment was more dynamic and the distribution and concentrations of dissolved oxygen were more complex and correlated to irradiance, temperature and biological activity. Microsensor technology provides us with the opportunity to study, at very high resolutions, the upper irradiated; photosynthetically active regions of aquatic sediments along with anoxic processes deeper in sub-euphotic regions of the sediments.