55 resultados para Constructs
Resumo:
GCR1 has been tentatively identified in Arabidopsis thaliana as the first plant G-protein coupled receptor (GPCR) (Josefsson and Rask 1997) implicated in the cytokinin sensory pathway (Plakidou-Dymock et al. 1998). A protein fusion of GCR1 and green fluorescent protein has been expressed in Arabidopsis and shown GCR1 to be located on the plasma membrane. Studies of plants with altered GCR1 expression have led us to question GCR1's involvement in cytokinin signaling. Transgenic Arabidopsis plants containing sense and antisense constructs for GCR1 have been produced and over- and under-expression confirmed. The analysis of 12 antisense and 17 sense lines has failed to reveal the previously reported Dainty phenotype or altered cytokinin sensitivity. We have used the Gauntlet approach to test the plants' response to various plant hormones although this has not yet identified a mutant phenotype. The yeast-two hybrid system has been used and so far there is no evidence to suggest GCR1 interacts with heterotrimeric G proteins. Before GCR1 can be identified as genuine G-protein coupled receptor, the identification of a ligand and a proof of association with heterotrimeric G-proteins should be obtained.
Resumo:
The human nervous system constructs a Euclidean representation of near (personal) space by combining multiple sources of information (cues). We investigated the cues used for the representation of personal space in a patient with visual form agnosia (DF). Our results indicated that DF relies predominantly on binocular vergence information when determining the distance of a target despite the presence of other (retinal) cues. Notably, DF was able to construct an Euclidean representation of personal space from vergence alone. This finding supports previous assertions that vergence provides the nervous system with veridical information for the construction of personal space. The results from the current study, together with those of others, suggest that: (i) the ventral stream is responsible for extracting depth and distance information from monocular retinal cues (i.e. from shading, texture, perspective) and (ii) the dorsal stream has access to binocular information (from horizontal image disparities and vergence). These results also indicate that DF was not able to use size information to gauge target distance, suggesting that intact temporal cortex is necessary for learned size to influence distance processing. Our findings further suggest that in neurologically intact humans, object information extracted in the ventral pathway is combined with the products of dorsal stream processing for guiding prehension. Finally, we studied the size-distance paradox in visual form agnosia in order to explore the cognitive use of size information. The results of this experiment were consistent with a previous suggestion that the paradox is a cognitive phenomenon.
Resumo:
Wilson disease is an autosomal recessive copper transport disorder resulting from defective biliary excretion of copper and subsequent hepatic copper accumulation and liver failure if not treated. The disease is caused by mutations in the ATP7B (WND) gene, which is expressed predominantly in the liver and encodes a copper-transporting P-type ATPase that is structurally and functionally similar to the Menkes protein (MNK), which is defective in the X-linked copper transport disorder Menkes disease. The toxic milk (tx) mouse has a clinical phenotype similar to Wilson disease patients and, recently, the tx mutation within the murine WND homologue (Wnd) of this mouse was identified, establishing it as an animal model for Wilson disease. In this study, cDNA constructs encoding the wild-type (Wnd-wt) and mutant (Wnd-tx) Wilson proteins (Wnd) were generated and expressed in Chinese hamster ovary (CHO) cells. The fx mutation disrupted the copper-induced relocalization of Wnd in CHO cells and abrogated Wnd-mediated copper resistance of transfected CHO cells. In addition, co-localization experiments demonstrated that while Wnd and MNK are located in the trans-Golgi network in basal copper conditions, with elevated copper, these proteins are sorted to different destinations within the same cell, Ultrastructural studies showed that with elevated copper levels, Wnd accumulated in large multivesicular structures resembling late endosomes that may represent a novel compartment for copper transport. The data presented provide further support for a relationship between copper transport activity and the copper-induced relocalization response of mammalian copper ATPases, and an explanation at a molecular level for the observed phenotype of fx mice.
Resumo:
Existing refinement calculi provide frameworks for the stepwise development of imperative programs from specifications. This paper presents a refinement calculus for deriving logic programs. The calculus contains a wide-spectrum logic programming language, including executable constructs such as sequential conjunction, disjunction, and existential quantification, as well as specification constructs such as general predicates, assumptions and universal quantification. A declarative semantics is defined for this wide-spectrum language based on executions. Executions are partial functions from states to states, where a state is represented as a set of bindings. The semantics is used to define the meaning of programs and specifications, including parameters and recursion. To complete the calculus, a notion of correctness-preserving refinement over programs in the wide-spectrum language is defined and refinement laws for developing programs are introduced. The refinement calculus is illustrated using example derivations and prototype tool support is discussed.
Resumo:
This theoretical note describes an expansion of the behavioral prediction equation, in line with the greater complexity encountered in models of structured learning theory (R. B. Cattell, 1996a). This presents learning theory with a vector substitute for the simpler scalar quantities by which traditional Pavlovian-Skinnerian models have hitherto been represented. Structured learning can be demonstrated by vector changes across a range of intrapersonal psychological variables (ability, personality, motivation, and state constructs). Its use with motivational dynamic trait measures (R. B. Cattell, 1985) should reveal new theoretical possibilities for scientifically monitoring change processes (dynamic calculus model; R. B. Cattell, 1996b), such as encountered within psycho therapeutic settings (R. B. Cattell, 1987). The enhanced behavioral prediction equation suggests that static conceptualizations of personality structure such as the Big Five model are less than optimal.
Resumo:
The use of electrotransfer for DNA delivery to prokaryotic cells, and eukaryotic cells in vitro, has been well known and widely used for many years. However, it is only recently that electric fields have been used to enhance DNA transfer to animal cells in vivo, and this is known as DNA electrotransfer or in vivo DNA electroporation. Some of the advantages of this method of somatic cell gene transfer are that it is a simple method that can be used to transfer almost any DNA construct to animal cells and tissues in vivo; multiple constructs can be co-transfected; it is equally applicable to dividing and nondividing cells; the DNA of interest does not need to be subeloned into a specific viral transfer vector and there is no need for the production of high titre viral stocks; and, as no viral genes are expressed there is less chance of an adverse immunologic reaction to vector sequences. The ease with which efficient in vivo gene transfer can be achieved with in vivo DNA electrotransfer is now allowing genetic analysis to be applied to a number of classic animal model systems where transgenic and embryonic stem cell techniques are not well developed, but for which a wealth of detailed descriptive embryological information is available, or surgical manipulation is much more feasible. As well as exciting applications in developmental biology, in vivo DNA electrotransfer is also being used to transfer genes to skeletal muscle and drive expression of therapeutically active proteins, and to examine exogenous gene and protein function in normal adult cells situated within the complex environment of a tissue and organ system in vivo. Thus, in effect providing the in vivo equivalent of the in vitro transient transfection assay. As the widespread use of in vivo electroporation has really only just begun, it is likely that the future will hold many more applications for this technology in basic research, biotechnology and clinical research areas.
Resumo:
A conserved helical peptide vaccine candidate from the M protein of group A streptococci, p145, has been described. Minimal epitopes within p145 have been defined and an epitope recognized by protective antibodies, but not by autoreactive T cells, has been identified. When administered to mice, p145 has low immunogenicity. Many boosts of peptide are required to achieve a high antibody titre (> 12 800). To attempt to overcome this low immunogenicity, lipid-core peptide technology was employed. Lipid-core peptides (LCP) consist of an oligomeric polylysine core, with multiple copies of the peptide of choice, conjugated to a series of lipoamino acids, which acts as an anchor for the antigen. Seven different LCP constructs based on the p145 peptide sequence were synthesized (LCP1-->LCP7) and the immunogenicity of the compounds examined. The most immunogenic constructs contained the longest alkyl side-chains. The number of lipoamino acids in the constructs affected the immunogenicity and spacing between the alkyl side-chains increased immunogenicity. An increase in immunogenicity (enzyme-linked immunosorbent assay (ELISA) titres) of up to 100-fold was demonstrated using this technology and some constructs without adjuvant were more immunogenic than p145 administered with complete Freund's adjuvant (CFA). The fine specificity of the induced antibody response differed for the different constructs but one construct, LCP4, induced antibodies of identical fine specificity to those found in endemic human serum. Opsonic activity of LCP4 antisera was more than double that of p145 antisera. These data show the potential for LCP technology to both enhance immunogenicity of complex peptides and to focus the immune response towards or away from critical epitopes.
Resumo:
It has been argued that a firm's capacity to learn from its market is a source of both innovation and competitive advantage. However, past research has failed to conceptualize market-focused learning activity as a capability having the potential to contribute to competitive advantage. Prior innovation research has been biased toward technological innovation. However, there is evidence to suggest that both technological and non-technological innovations contribute to competitive advantage reflecting the need for a broader conceptualization of the innovation construct. Past research has also overlooked the critical role of entrepreneurship in the capability building process. Competitive advantage has been predominantly measured in terms of financial indicators of performance. In general, the literature reflects the need for comprehensive measures of organizational innovation and competitive advantage. This paper examines the role of market-focused learning capability in organizational innovation-based competitive strategy. The paper contributes to the strategic marketing theory by developing and refining measures of entrepreneurship, market-focused learning capability, organizational innovation and sustained competitive advantage, testing relationships among these constructs.
Resumo:
Under certain conditions, cross-sectional analysis of cross-twin intertrait correlations can provide important information about the direction of causation (DOC) between two variables. A community-based sample of Australian female twins aged 18 to 45 years was mailed an extensive Health and Lifestyle Questionnaire (HLQ) that covered a wide range of personality and behavioral measures. Included were self-report measures of recent psychological distress and perceived childhood environment (PBI). Factor analysis of the PBI yielded three interpretable dimensions: Coldness, Overprotection, and Autonomy. Univariate analysis revealed that parental Overprotection and Autonomy were best explained by additive genetic, shared, and nonshared environmental effects (ACE), whereas the best-fitting model for PBI Coldness and the three measures of psychological distress (Depression, Phobic Anxiety, and Somatic Distress) included only additive genetic and nonshared environmental effects (AE). A common pathway model best explained the covariation between (1) the three PBI dimensions and (2) the three measures of psychological distress. DOC modeling between latent constructs of parenting and psychological distress revealed that a model which specified recollected parental behavior as the cause of psychological distress provided a better fit than a model which specified psychological distress as the cause of recollected parental behavior. Power analyses and limitations of the findings are discussed.
Resumo:
The associations of physical activity and sedentary behavior with barriers, enjoyment, and preferences were examined in a population-based mail survey of 1,332 adults. Respondents reporting high enjoyment and preference for physical activity were more likely to report high levels of activity. Those reporting cost, the weather, and personal barriers to physical activity were less likely to be physically active. Preference for sedentary behavior was associated with the decreased likelihood of being physically active, and the weather as a barrier to physical activity was associated with the increased likelihood of sedentary behavior. These constructs can be used to examine individual and environmental influences on physical activity and sedentary behavior in specific populations and could inform the development of targeted interventions.