52 resultados para Concurrent Engineering
Resumo:
This paper attempts a state-of-the-art summary of research into thunderstorm wind fields from an engineering perspective. The characteristics of thunderstorms and the two extreme wind events-tornadoes and downbursts-spawn by thunderstorms are described. The significant differences from traditional boundary layer flows are highlighted. The importance of thunderstorm gusts in the worldwide database of extreme wind events is established. Physical simulations of tornadoes and downbursts are described and discussed leading to the recommendation that Wind Engineering needs to focus more resources on the fundamental issue - What is the flow structure in the strongest winds? © 2002 Published by Elsevier Science Ltd.
Resumo:
Objective To describe the renal lesions in Bull Terrier polycystic kidney disease (BTPKD), to confirm that the renal cysts in BTPKD arise from the nephron or collecting tubule, an to identify lesions consistent with concurrent BTPKD and Bull Terrier hereditary nephritis (BTHN). Design Renal tissue from five Bull Terriers with BTPKD and eight control dogs was examined by light and transmission electron microscopy. Clinical data were collected from all dogs, and family history of BTPKD and BTHN for all Bull Terriers. Results In BTPKD the renal cysts were lined by epithelial cells of nephron or collecting duct origin that were usually squamous or cuboidal, with few organelles. They had normal junctional complexes, and basal laminae of varying thicknesses. Glomeruli with small, atrophic tufts and dilated Bowman's capsules, tubular loss and dilation, and interstitial inflammation and fibrosis were common. Whereas the lesions seen in BTHN by light microscope were nonspecific, the presence of characteristic ultrastructural glomerular basement membrane (GMB) lesions and a family history of this disease indicated concurrent BTHN was likely in three of five cases of BTPKD. Conclusion This paper provides evidence that renal cysts in BTPKD are of nephron or collecting duct origin. In addition, GBM lesions are described that strongly suggest that BTPKD and BTHN may occur simultaneously.
Resumo:
This study investigated the influence of a concurrent cognitive task on the compensatory stepping response in balance-impaired elders and the attentional demand of the stepping response. Kinetic, kinematic and neuromuscular measures of a forward recovery step were investigated in 15 young adults, 15 healthy elders and 13 balance-impaired elders in a single task (postural recovery only) and dual task (postural recovery and vocal reaction time task) situation. Results revealed that reaction times were longer in all subjects when performed concurrently with a compensatory step, they were longer for a step than an in-place response and longer for balance-impaired older adults compared with young adults. An interesting finding was that the latter group difference may be related to prioritization between the two tasks rather than attentional demand, as the older adults completed the step before the reaction time, whereas the young adults could perform both concurrently. Few differences in step characteristics were found between tasks, with the most notable being a delayed latency and reduced magnitude of the early automatic postural response in healthy and balance-impaired elders with a concurrent task. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The Oscillatory baffled reactor (OBR) can be used to produce particles with controlled size and morphology, in batch or continuous flow. This is due to the effect of the superimposed oscillations that radially mixes fluid but still allows plug-flow (or close to plug flow) behaviour in a continuous system. This mixing, combined with a close to a constant level of turbulence intensity in the reactor, leads to tight droplet and subsequent product particle size distributions. By applying population balance equations together with experimental droplet size distributions, breakage rates of droplets can be determined and this is a useful tool for understanding the product engineering in OBRs. (C) 2002 Elsevier Science B.V All rights reserved.
Resumo:
Along with material characteristics and geometry, the climate in which a mine is located can have a dramatic effect on the appropriate options for rehabilitation. The paper outlines the setting, mining, milling and waste disposal at Kidston Gold Mine's open pit operations in the semi-arid climate of North Queensland, Australia, before focusing on the engineering aspects of the rehabilitation of Kidston. The mine took a holistic and proactive approach to rehabilitation, and was prepared to demonstrate a number of innovative approaches, which are described in the paper. Engineering issues that had to be addressed included the geotechnical stability and deformation of waste rock dumps, including a 240 m high in-pit dump: the construction and performance monitoring of a “store and release” cover over potentially acid forming mineralised waste rock; erosion from the side slopes of the waste rock dumps; the in-pit co-disposal of waste rock and thickened tailings; the geotechnical stability of the tailings dam wall; the potential for erosion of bare tailings; the water balance of the tailings dam; direct revegetation of the tailings; and the pit hydrology. The rehabilitation of the mine represents an important benchmark in mine site rehabilitation best practice, from which lessons applicable worldwide can be shared.
Resumo:
Regeneration of osseous defects by a tissue-engineering approach provides a novel means of treatment utilizing cell biology, materials science, and molecular biology. In this study the concept of tissue engineering was tested with collagen type I matrices seeded with cells with osteogenic potential and implanted into sites where osseous damage had occurred. Explant cultures of cells from human alveolar bone and gingiva were established. When seeded into a three-dimensional type I collagen-based scaffold, the bone-derived cells maintained their osteoblastic phenotype as monitored by mRNA and protein levels of the bone-related proteins including bone sialoprotein, osteocalcin, osteopontin, bone morphogenetic proteins 2 and 4, and alkaline phosphatase. These in vitro-developed matrices were implanted into critical-size bone defects in skulls of immunodeficient (SCID) mice. Wound healing was monitored for up to 4 weeks. When measured by microdensitometry the bone density within defects filled with osteoblast-derived matrix was significantly higher compared with defects filled with either collagen scaffold alone or collagen scaffold impregnated with gingival fibroblasts. New bone formation was found at all the sites treated with the osteoblast-derived matrix at 28 days, whereas no obvious new bone formation was identified at the same time point in the control groups. In situ hybridization for the human-specific Alu gene sequence indicated that the newly formed bone tissue resulted from both transplanted human osteoblasts and endogenous mesenchymal stem cells. The results indicate that cells derived from human alveolar bone can be incorporated into bioengineered scaffolds and synthesize a matrix, which on implantation can induce new bone formation.