229 resultados para Computer models
Resumo:
Software simulation models are computer programs that need to be verified and debugged like any other software. In previous work, a method for error isolation in simulation models has been proposed. The method relies on a set of feature matrices that can be used to determine which part of the model implementation is responsible for deviations in the output of the model. Currrently these feature matrices have to be generated by hand from the model implementation, which is a tedious and error-prone task. In this paper, a method based on mutation analysis, as well as prototype tool support for the verification of the manually generated feature matrices is presented. The application of the method and tool to a model for wastewater treatment shows that the feature matrices can be verified effectively using a minimal number of mutants.
Resumo:
Objective:To investigate the effects of bilateral, surgically induced functional inhibition of the subthalamic nucleus (STN) on general language, high level linguistic abilities, and semantic processing skills in a group of patients with Parkinson’s disease. Methods:Comprehensive linguistic profiles were obtained up to one month before and three months after bilateral implantation of electrodes in the STN during active deep brain stimulation (DBS) in five subjects with Parkinson’s disease (mean age, 63.2 years). Equivalent linguistic profiles were generated over a three month period for a non-surgical control cohort of 16 subjects with Parkinson’s disease (NSPD) (mean age, 64.4 years). Education and disease duration were similar in the two groups. Initial assessment and three month follow up performance profiles were compared within subjects by paired t tests. Reliability change indices (RCI), representing clinically significant alterations in performance over time, were calculated for each of the assessment scores achieved by the five STN-DBS cases and the 16 NSPD controls, relative to performance variability within a group of 16 non-neurologically impaired adults (mean age, 61.9 years). Proportions of reliable change were then compared between the STN-DBS and NSPD groups. Results:Paired comparisons within the STN-DBS group showed prolonged postoperative semantic processing reaction times for a range of word types coded for meanings and meaning relatedness. Case by case analyses of reliable change across language assessments and groups revealed differences in proportions of change over time within the STN-DBS and NSPD groups in the domains of high level linguistics and semantic processing. Specifically, when compared with the NSPD group, the STN-DBS group showed a proportionally significant (p
Resumo:
Traditionally the basal ganglia have been implicated in motor behavior, as they are involved in both the execution of automatic actions and the modification of ongoing actions in novel contexts. Corresponding to cognition, the role of the basal ganglia has not been defined as explicitly. Relative to linguistic processes, contemporary theories of subcortical participation in language have endorsed a role for the globus pallidus internus (GPi) in the control of lexical-semantic operations. However, attempts to empirically validate these postulates have been largely limited to neuropsychological investigations of verbal fluency abilities subsequent to pallidotomy. We evaluated the impact of bilateral posteroventral pallidotomy (BPVP) on language function across a range of general and high-level linguistic abilities, and validated/extended working theories of pallidal participation in language. Comprehensive linguistic profiles were compiled up to 1 month before and 3 months after BPVP in 6 subjects with Parkinson's disease (PD). Commensurate linguistic profiles were also gathered over a 3-month period for a nonsurgical control cohort of 16 subjects with PD and a group of 16 non-neurologically impaired controls (NC). Nonparametric between-groups comparisons were conducted and reliable change indices calculated, relative to baseline/3-month follow-up difference scores. Group-wise statistical comparisons between the three groups failed to reveal significant postoperative changes in language performance. Case-by-case data analysis relative to clinically consequential change indices revealed reliable alterations in performance across several language variables as a consequence of BPVP. These findings lend support to models of subcortical participation in language, which promote a role for the GPi in lexical-semantic manipulation mechanisms. Concomitant improvements and decrements in postoperative performance were interpreted within the context of additive and subtractive postlesional effects. Relative to parkinsonian cohorts, clinically reliable versus statistically significant changes on a case by case basis may provide the most accurate method of characterizing the way in which pathophysiologically divergent basal ganglia linguistic circuits respond to BPVP.
Resumo:
The Gaudin models based on the face-type elliptic quantum groups and the XYZ Gaudin models are studied. The Gaudin model Hamiltonians are constructed and are diagonalized by using the algebraic Bethe ansatz method. The corresponding face-type Knizhnik–Zamolodchikov equations and their solutions are given.
Resumo:
In this review we demonstrate how the algebraic Bethe ansatz is used for the calculation of the-energy spectra and form factors (operator matrix elements in the basis of Hamiltonian eigenstates) in exactly solvable quantum systems. As examples we apply the theory to several models of current interest in the study of Bose-Einstein condensates, which have been successfully created using ultracold dilute atomic gases. The first model we introduce describes Josephson tunnelling between two coupled Bose-Einstein condensates. It can be used not only for the study of tunnelling between condensates of atomic gases, but for solid state Josephson junctions and coupled Cooper pair boxes. The theory is also applicable to models of atomic-molecular Bose-Einstein condensates, with two examples given and analysed. Additionally, these same two models are relevant to studies in quantum optics; Finally, we discuss the model of Bardeen, Cooper and Schrieffer in this framework, which is appropriate for systems of ultracold fermionic atomic gases, as well as being applicable for the description of superconducting correlations in metallic grains with nanoscale dimensions.; In applying all the above models to. physical situations, the need for an exact analysis of small-scale systems is established due to large quantum fluctuations which render mean-field approaches inaccurate.
Resumo:
The XSophe-Sophe-XeprView((R)) computer simulation software suite enables scientists to easily determine spin Hamiltonian parameters from isotropic, randomly oriented and single crystal continuous wave electron paramagnetic resonance (CW EPR) spectra from radicals and isolated paramagnetic metal ion centers or clusters found in metalloproteins, chemical systems and materials science. XSophe provides an X-windows graphical user interface to the Sophe programme and allows: creation of multiple input files, local and remote execution of Sophe, the display of sophelog (output from Sophe) and input parameters/files. Sophe is a sophisticated computer simulation software programme employing a number of innovative technologies including; the Sydney OPera HousE (SOPHE) partition and interpolation schemes, a field segmentation algorithm, the mosaic misorientation linewidth model, parallelization and spectral optimisation. In conjunction with the SOPHE partition scheme and the field segmentation algorithm, the SOPHE interpolation scheme and the mosaic misorientation linewidth model greatly increase the speed of simulations for most spin systems. Employing brute force matrix diagonalization in the simulation of an EPR spectrum from a high spin Cr(III) complex with the spin Hamiltonian parameters g(e) = 2.00, D = 0.10 cm(-1), E/D = 0.25, A(x) = 120.0, A(y) = 120.0, A(z) = 240.0 x 10(-4) cm(-1) requires a SOPHE grid size of N = 400 (to produce a good signal to noise ratio) and takes 229.47 s. In contrast the use of either the SOPHE interpolation scheme or the mosaic misorientation linewidth model requires a SOPHE grid size of only N = 18 and takes 44.08 and 0.79 s, respectively. Results from Sophe are transferred via the Common Object Request Broker Architecture (CORBA) to XSophe and subsequently to XeprView((R)) where the simulated CW EPR spectra (1D and 2D) can be compared to the experimental spectra. Energy level diagrams, transition roadmaps and transition surfaces aid the interpretation of complicated randomly oriented CW EPR spectra and can be viewed with a web browser and an OpenInventor scene graph viewer.