49 resultados para Compound Growth Rate


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mortality of first instars is generally very high, but variable, and is caused by many factors, including physical and chemical plant characters, weather and natural enemies. Here, a summary of detailed field-based studies of the early-stage survival of a specialist lepidopteran herbivore is presented. First-instar larvae of the monarch butterfly, Danaus plexippus, a milkweed specialist, generally grew faster and survived better on leaves when latex flow was reduced by partial severance of the leaf petiole. The outcome depended on milkweed species, and was related to the amount of latex produced, as well as other plant characters, such as leaf hairs, microclimate and concentration of secondary metabolites. Even for a so-called 'milkweed specialist', larval performance and survival appears to be related to the concentration of cardenolides produced by the plants (a potential chemical defence against herbivory). This case study of monarchs and milkweeds highlights the need for field-based experiments to assess the effect of plant characters on the usually poor survival of early instar phytophagous insects. Few similar studies concerning the performance and survival of first-instar, eucalypt-specific herbivores have been conducted, but this type of study is considered essential based on the findings obtained using D. plexippus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Predicting plant leaf area production is required for modelling carbon balance and tiller dynamics in plant canopies. Plant leaf area production can be studied using a framework based on radiation intercepted, radiation use efficiency (RUE) and leaf area ratio (LAR) (ratio of leaf area to net above-ground biomass). The objective of this study was to test this framework for predicting leaf area production of sorghum during vegetative development by examining the stability of the contributing components over a large range of plant density. Four densities, varying from 2 to 16 plants m(-2), were implemented in a field experiment. Plants were either allowed to tiller or were maintained as uniculm by systematic tiller removal. In all cases, intercepted radiation was recorded daily and leaf area and shoot dry matter partitioning were quantified weekly at individual culm level. Up to anthesis, a unique relationship applied between fraction of intercepted radiation and leaf area index, and between shoot dry weight accumulation and amount of intercepted radiation, regardless of plant density. Partitioning of shoot assimilate between leaf, stem and head was also common across treatments up to anthesis, at both plant and culm levels. The relationship with thermal time (TT) from emergence of specific leaf area (SLA) and LAR of tillering plants did not change with plant density. In contrast, SLA of uniculm plants was appreciably lower under low-density conditions at any given TT from emergence. This was interpreted as a consequence of assimilate surplus arising from the inability of the plant to compensate by increasing the leaf area a culm could produce. It is argued that the stability of the extinction coefficient, RUE and plant LAR of tillering plants observed in these conditions provides a reliable way to predict leaf area production regardless of plant density. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The standard mathematical models in population ecology assume that a population's growth rate is a function of its environment. In this paper we investigate an alternative proposal according to which the rate of change of the growth rate is a function of the environment and of environmental change. We focus on the philosophical issues involved in such a fundamental shift in theoretical assumptions, as well as on the explanations the two theories offer for some of the key data such as cyclic populations. We also discuss the relationship between this move in population ecology and a similar move from first-order to second-order differential equations championed by Galileo and Newton in celestial mechanics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Functional knowledge of the physiological basis of crop adaptation to stress is a prerequisite for exploiting specific adaptation to stress environments in breeding programs. This paper presents an analysis of yield components for pearl millet, to explain the specific adaptation of local landraces to stress environments in Rajasthan, India. Six genotypes, ranging from high-tillering traditional landraces to low-tillering open-pollinated modern cultivars, were grown in 20 experiments, covering a range of nonstress and drought stress patterns. In each experiment, yield components (particle number, grain number, 100 grain mass) were measured separately for main shoots, basal tillers, and nodal tillers. Under optimum conditions, landraces had a significantly lower grain yield than the cultivars, but no significant differences were observed at yield levels around 1 ton ha(-1). This genotype x environment interaction for grain yield was due to a difference in yield strategy, where landraces aimed at minimising the risk of a crop failure under stress conditions, and modem cultivars aimed at maximising yield potential under optimum conditions. A key aspect of the adaptation of landraces was the small size of the main shoot panicle, as it minimised (1) the loss of productive tillers during stem elongation; (2) the delay in anthesis if mid-season drought occurs; and (3) the reduction in panicle productivity of the basal tillers under stress. In addition, a low investment in structural panicle weight, relative to vegetative crop growth rate, promoted the production of nodal tillers, providing a mechanism to compensate for reduced basal tiller productivity if stress occurred around anthesis. A low maximum 100 grain mass also ensured individual grain mass was little affected by environmental conditions. The strategy of the high-tillering landraces carries a yield penalty under optimum conditions, but is expected to minimise the risk of a crop failure, particularly if mid-season drought stress occurs. The yield architecture of low-tillering varieties, by contrast, will be suited to end-of-season drought stress, provided anthesis is early. Application of the above adaptation mechanisms into a breeding program could enable the identification of plant types that match the prevalent stress patterns in the target environments. (C) 2003 E.J. van Oosterom. Published by Elsevier Science B.V. All rights reserved.