94 resultados para Coastal and estuarine stations
Resumo:
Mangrove forest structure and sediment characteristics were examined in the extensive mangroves of Bocas del Toro, Republic of Panama. Forest structure was characterized to determine if spatial vegetation patterns were repeated over the Bocas del Toro landscape. Using a series of permanent plots and transects we found that the forests of Bocas del Toro were dominated by Rhizophora maugle with very few individuals of Avicennia germinans and Laguncularia racemosa. Despite this low species diversity, there was large variation in forest structure and in edaphic conditions (salinity, concentration of available phosphorus, Eh and sulphide concentration). Aboveground biomass varied 20-fold, from 6.8 Mg ha(-1) in dwarf forests to 194.3 Mg ha(-1) in the forests fringing the land. But variation in forest structure was predictable across the intertidal zone. There was a strong tree height gradient from seaward fringe (mean tree height 3.9 m), decreasing in stature in the interior dwarf forests (mean tree height 0.7 m), and increasing in stature in forests adjacent to the terrestrial forest (mean tree height 4.1 m). The predictable variation in forest structure emerges due to the complex interactions among edaphic and plant factors. Identifying predictable patterns in forest structure will aid in scaling up the ecosystem services provided by mangrove forests in coastal landscapes.
Resumo:
Adaptive management is the pathway to effective conservation, use and management of Australia’s coastal catchments and waterways. While the concepts of adaptive management are not new, applications involving both assessment and management responses are indeed limited at the national and regional scales. This paper outlines the components of a systematic framework for linking scientific knowledge, existing tools, planning approaches and participatory processes to achieve healthy regional partnerships between community, industry, government agencies and science providers to overcome institutional barriers and uncoordinated monitoring. The framework developed by the Coastal CRC (www.coastal.crc.org.au/amf/amf_index.htm) is hierarchical in the way it displays information to allow associated frameworks to be integrated, and represents a construct in which processes, information, decision tools and outcomes are brought together in a structured and transparent way for adaptive catchment and coastal management. This paper proposes how an adaptive management approach could be used to benefit the implementation of the Reef Water Quality Protection Plan (RWQPP).
Resumo:
Bull sharks (Carcharhinus leucas) were captured across a salinity gradient from freshwater (FW) to seawater (SW). Across all salinities, C leucas were hyperosmotic to the environment. Plasma osmolarity in FW-captured animals (642 +/- 7 mosM) was significantly reduced compared to SW-captured animals (1067 +/- 21 mosM). In FW animals, sodium, chloride and urea were 208 +/- 3, 203 +/- 3 and 192 +/- 2 mmol l(-1), respectively. Plasma sodium, chloride and urea in SW-captured C leucas were 289 +/- 3, 296 +/- 6 and 370 +/- 10 mmol l(-1), respectively. The increase in plasma osmolarity between FW and SW was not linear. Between FW (3 mosM) and 24%o SW (676 mosM), plasma osmolarity increased by 22% or 0.92% per 1parts per thousand rise in salinity. Between 24%o and 33parts per thousand, plasma osmolarity increased by 33% or 4.7% per 1 parts per thousand rise in salinity, largely due to a sharp increase in plasma urea between 28parts per thousand and 33parts per thousand. C. leucas moving between FW and SW appear to be faced with three major osmoregulatory challenges, these occur between 0-10parts per thousand, 11-20parts per thousand and 21-33parts per thousand. A comparison between C leucas captured in FW and estuarine environments (20-28%o) in the Brisbane River revealed no difference in the mass of rectal glands between these animals. However, a comparison of rectal gland mass between FW animals captured in the Brisbane River and Rio San Juan/Lake Nicaragua showed that animals in the latter system had a significantly smaller rectal gland mass at a given length than animals in the Brisbane River. The physiological challenges and mechanisms required for C leucas moving between FW and SW, as well as the ecological implications of these data are discussed. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Responses of stomatal conductance (g(s)) and net photosynthesis (A) to changes in soil water availability, photosynthetic photon flux density (Q), air temperature (1) and leaf-to-air vapour pressure deficit (D) were investigated in 4-year-old trees of a dry inland provenance of Eucalyptus argophloia Blakely, and two dry inland provenances (Coominglah and Hungry Hills) and a humid coastal provenance (Wolvi) of Eucalyptus cloeziana F. Muell. between April 2001 and April 2002 in southeast Queensland, Australia. There were minimal differences in A, g, and water relations variables among the coastal and inland provenances of E. cloeziana but large differences between E. argophloia and E. cloeziana. E. argophloia and to a lesser extent the Hungry Hills (inland) provenance of E. cloeziana maintained relatively higher pre-dawn water potential (psi(pd)) during the dry season suggesting possible access to water at depth. Simple phenomenological models of stomatal conductance as a function of Q, T and D explained 60% of variation in gs in E. cloeziana and more than 75% in E. argophloia, when seasonal effect was incorporated in the model. A Ball-Berry model for net photosynthesis explained between 70 and 80% of observed variation in A in both species. These results have implications in matching the dry and humid provenances of E. cloeziana and E. argophloia to suitable sites in subtropical environments. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The primary aim of this study was to investigate whether bait harvesting, with all its inherent effects, occurring in the intertidal zone of a subtropical estuary, had an impact on a migratory shorebird, the eastern curlew Numenius madagascariensis. In a large-scale manipulative study (units of experiment were 1 ha plots), callianassid shrimp Trypaea australiensis populations were harvested simulating the technique (manual pumping) and the levels of harvesting intensity per unit area (347 shrimp per hectare per harvesting event) exhibited by bait-collectors in SE Australia and South Africa. It was found that at present levels of harvesting intensity per unit area (approximately 1% of standing stock removed per harvesting event) there is no threat to the stocks of Trypaea exploited by the curlews in Moreton Bay, Australia. However, the results show that the curlews themselves apply a considerable predation pressure on Trypaea. Based on the birds' foraging rates and densities, it was estimated that they would consume up to 100% of the initial Trypaea stock over the course of a non-breeding season (October to March). However, the stable seasonal trend in the density of the size-cohort of Trypaea preyed upon by the curlews indicates that the existing rates of predation are easily counterbalanced, e.g. through continuous density-dependent recruitment of these crustaceans. We suggest that this mechanism will provide for a stable foraging environment for both the shorebirds and bait collectors.
Resumo:
Large blooms of the marine cyanobacterium Lyngbya majuscula in Moreton Bay, Australia (27 degrees 05'S, 153 degrees 08'E) have been re-occurring for several years. A bloom was studied in Deception Bay (Northern Moreton Bay) in detail over the period January-March 2000. In situ data loggers and field sampling characterised various environmental parameters before and during the L. majuscula bloom. Various ecophysiological experiments were conducted on L. majuscula collected in the field and transported to the laboratory, including short-term (2h) C-14 incorporation rates and long-term (7 days) pulse amplitude modulated (PAM) fluorometry assessments of photosynthetic capacity. The effects of L. majuscula on various seagrasses in the bloom region were also assessed with repeated biomass sampling. The bloom commenced in January 2000 following usual December rainfall events, water temperatures in excess of 24 degrees C and high light conditions. This bloom expanded rapidly from 0 to a maximum extent of 8 km(2) over 55 days with an average biomass of 210 g(dw)(-1) m(-2) in late February, followed by a rapid decline in early April. Seagrass biomass, especially Syringodium isoetifolium, was found to decline in areas of dense L. majuscula accumulation. Dissolved and total nutrient concentrations did not differ significantly (P > 0.05) preceding or during the bloom. However, water samples from creeks discharging into the study region indicated elevated concentrations of total iron (2.7-80.6 mu M) and dissolved organic carbon (2.5-24.7 mg L-1), associated with low pH values (3.8-6.7). C-14 incorporation rates by L. majuscula were significantly (P < 0.05) elevated by additions of iron (5 mu M Fe), an organic chelator, ethylenediaminetetra-acetic acid (5 mu M EDTA) and phosphorus (5 mu M PO4-3). Photosynthetic capacity measured with PAM fluorometry was also stimulated by various nutrient additions, but not significantly (P > 0.05). These results suggest that the L. majuscula bloom may have been stimulated by bioavailable iron, perhaps complexed by dissolved organic carbon. The rapid bloom expansion observed may then have been sustained by additional inputs of nutrients (N and P) and iron through sediment efflux, stimulated by redox changes due to decomposing L. majuscula mats. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The effects of harvesting of callianassid shrimp (Trypaea australiensis) on the abundance and composition of macrobenthic assemblages in unvegetated sediments of a subtropical coastal embayment in Queensland, Australia were examined using a combination of sampling and manipulative experiments. First, the abundance and composition of the benthic infauna in an area regularly used for the collection of shrimp for bait by recreational anglers was compared with multiple reference areas. Second, a BACI design, with multiple reference areas, was used to examine the short-term effects of harvesting on the benthic assemblages from an intensive commercialised fishing competition. Third, a large-scale, controlled manipulative experiment, where shrimp were harvested from 10,000 m(2) plots at intensities commensurate with those from recreational and commercial operators, was done to determine the impacts on different components of the infaunal assemblage. Only a few benthic taxa showed significant declines in abundance in response to the removal of ghost shrimp from the unvegetated sediments. There was evidence, however, of more subtle effects with changes in the degree of spatial variation (patchiness) of several taxa as a result of harvesting.. Groups such as capitellid polychaetes, gammarid amphipods and some bivalves were significantly more patchy in their distribution in areas subjected to harvesting than reference areas, at a scale of tens of metres. This scale corresponds to the patterns of movement and activity of recreational harvesters working in these areas. In contrast, patchiness in the abundance of ghost shrimp decreased significantly under harvesting at scales of hundreds of metres, in response to harvesters focussing their efforts on areas with greater numbers of burrow entrances, leading to a more even distribution of the animals. Controlled experimental harvesting caused declines in the abundance of soldier crabs (Mictyris longicarpus), polychaetes and amphipods and an increase in the spatial patchiness of polychaetes. Populations of ghost shrimp were, however, resilient to harvesting over extended periods of time. In conclusion, harvesting of ghost shrimp for bait by recreational and commercial fishers causes significant but localised impacts on a limited range of benthic fauna in unvegetated sediments, including changes in the degree of spatial patchiness in their distribution. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
For the managers of a region as large as the Great Barrier Reef, it is a challenge to develop a cost effective monitoring program, with appropriate temporal and spatial resolution to detect changes in water quality. The current study compares water quality data (phytoplankton abundance and water clarity) from remote sensing with field sampling (continuous underway profiles of water quality and fixed site sampling) at different spatial scales in the Great Barrier Reef north of Mackay (20 degrees S). Five transects (20-30 km long) were conducted from clean oceanic water to the turbid waters adjacent to the mainland. The different data sources demonstrated high correlations when compared on a similar spatial scale (18 fixed sites). However, each data source also contributed unique information that could not be obtained by the other techniques. A combination of remote sensing, underway sampling and fixed stations will deliver the best spatial and temporal monitoring of water quality in the Great Barrier Reef. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Digenean parasites of marine bivalves are relatively poorly known, particularly in Australia. We surveyed 2256 bivalve individuals ( 47 species, 17 families) from Queensland marine waters incorporating south-east Queensland, Heron Island ( southern Great Barrier Reef) and Lizard Island ( northern Great Barrier Reef). Infections of trematode species from three families, Bucephalidae, Gorgoderidae and Monorchiidae, were found. Overall prevalence of infection was 2.3%. The Bucephalidae was the most commonly found family; 11 species were found in Tellinidae, Ostreidae, Isognomonidae and Spondylidae - the latter two previously unknown as hosts for bucephalids. A single gorgoderid infection was found in a venerid, Lioconcha castrensis. Five species of monorchiids were found from Tellinidae and Lucinidae. All infections are new host/parasite records. No infections were found in 35 of the 47 bivalve species sampled. The generally low prevalence of infection by digeneans of bivalves suggests that it is unlikely that any of the species reported here are seriously damaging to bivalve populations in these waters. We deduce that, at best, we have some life-cycle information but no actual identifications for 10% of the species of trematodes that infect bivalves of Queensland marine waters.
Resumo:
This Study describes the community of all metazoan parasites from 14 individuals of thicklip wrasse, Hemigymnus melapterus, from Lizard Island, Australia. All fish were parasitized, and 4,649 parasite individuals were found. Twenty-six parasite species were identified although only 6 species were abundant and prevalent: gnathiid isopods, the copepod Hatschekia hemigymni, the digenean Callohelmis pichelinae, and 3 morphotypes of tetraphyllidean cestode larvae. We analyzed whether the body size and microhabitat of the parasites and size of the host affected understanding of the structure of the parasite community. We related the abundance, biovolume, and density of parasites with the host body size and analyzed the abundances and volumetric densities of some parasite species within microhabitats. Although the 2 most abundant species comprised 75% of all parasite individuals, 4 species, each in similar proportion, comprised 85% of the total biovolume. Although larger host individuals had higher richness, abundance, and biovolume of parasites than smaller individuals, overall parasite volumetric density actually decreased with the host body size. Moreover. parasites exhibited abundances and densities significantly different among microhabitats; some parasite species depended on the area available, whereas others selected a specific microhabitat. Parasite and habitat size exhibited interesting relationships that should be considered more frequently. Considerations of these parameters improve understanding of parasite community structure and how the parasites use their habitats.