49 resultados para Chloride channels
Resumo:
A major limitation in any high-performance digital communication system is the linearity region of the transmitting amplifier. Nonlinearities typically lead to signal clipping. Efficient communication in such conditions requires maintaining a low peak-to-average power ratio (PAR) in the transmitted signal while achieving a high throughput of data. Excessive PAR leads either to frequent clipping or to inadequate resolution in the analog-to-digital or digital-to-analog converters. Currently proposed signaling schemes for future generation wireless communications suffer from a high PAR. This paper presents a new signaling scheme for channels with clipping which achieves a PAR as low as 3. For a given linear range in the transmitter's digital-to-analog converter, this scheme achieves a lower bit-error rate than existing multicarrier schemes, owing to increased separation between constellation points. We present the theoretical basis for this new scheme, approximations for the expected bit-error rate, and simulation results. (C) 2002 Elsevier Science (USA).
Resumo:
Two studies were conducted to examine the effects of including NaCl at various rates in grain-based supplements for Friesian cows grazing established, dominant (>90%), rainfed kikuyu (Pennisetum clandestinum cv. Common) pastures during summer and autumn in a humid sub-tropical environment. In study 1 (19 January-27 March 1998), 48 cows (36 multiparous, 12 primiparous; 27-96 days postpartum) were allocated to one of four groups based on genetic merit, milk production, liveweight (LW) and days postpartum. They were fed (2.7 kg dry matter (DM) per cow, twice-a-day) one of four isoenergetic and isonitrogenous barley grain-based concentrates containing NaCl at concentrations (% as-fed) of either 0 (SC1), 1.1 (SC2), 2.2 (SC3) or 3.3 (SC4). Maximum temperature humidity index (THImax) was greater than or equal to78 during 50% of the experimental period. Concentrate NaCl content had no effect (P>0.05) on daily milk yield or LW change but daily yields of 4% fat corrected milk (FCM), fat and protein were higher (P0.05) among treatments at 7.6+/-1.24 kg DM per cow. In study 2 (18 January 1999-1 March 1999), 48 cows (32 pluriparous, 16 primiparous: 32-160 days postpartum) were fed (2.7 kg DM per cow twice-a-day) one of two isoenergetic and isonitrogenous barley grain-based concentrates containing NaCl at concentrations (% as-fed) of 0 (control) or 2.2 (HSC). THImax was greater than or equal to78 during 34% of days in the experimental period. Yields of milk, FCM, fat and protein were lower (P0.05) by concentrate NaCl content. These studies indicate that NaCl supplementation can be beneficial in terms of milk production during warm, humid conditions as opposed to milder conditions. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Although the polyunsaturated fatty acids arachidonic acid (AA) and docosahexaenoic acid (DHA) are enriched in the olfactory mucosa, their possible contribution to olfactory transduction has not been investigated. This study characterized their effects on voltage-gated K+ and Na+ channels of rat olfactory receptor neurons. Physiological (3-10 mum) concentrations of AA and DHA potently and irreversibly inhibited the voltage-gated K+ current in a voltage-independent manner. In addition, both compounds significantly reduced the inhibitory potency of the odorants acetophenone and amyl acetate at these channels. By comparison, the steady-state effects of both AA and DHA on the voltage-gated Na+ channel were relatively weak, with half-maximal inhibition requiring approximate to 35 mum of either compound. However, a surprising finding was that the initial application of 3 mum AA to a naive neuron caused a strong but transient inhibition of the Na+ current. The channels became almost completely resistant to this inhibition within 1 min, and a 2-min wash in control solution was insufficient to restore the strong inhibitory effect. These observations suggest that polyunsaturated fatty acids have the potential to strongly influence the coding of odorant information by olfactory receptor neurons.
Resumo:
ATP-dependent K+ channels (K-ATP) account for most of the recycling of K+ which enters the proximal tubules cell via Na, K-ATPase. In the mitochondrial membrane, opening of these channels preserves mitochondrial viability and matrix volume during ischemia. We examined KATP channel modulation in renal ischemia-reperfusion injury (IRI), using an isolated perfused rat kidney (IPRK) model, in control, IRI, IRI + 200 muM diazoxide (a K-ATP opener), IRI + 10 muM glibenclamide (a K-ATP blocker) and IRI + 200 muM diazoxide + 10 muM glibenclamide groups. IRI was induced by 2 periods of warm ischemia, followed by 45 min of reperfusion. IRI significantly decreased glomerular filtration rate (GFR) and increased fractional excretion of sodium (FENa) (p < 0.01). Neither diazoxide nor glibenclamide had an effect on control kidney function other than an increase in renal vascular resistance produced by glibenclamide. Pretreatment with 200 muM diazoxide reduced the postischemic increase in FENa (p < 0.05). Adding 10 muM glibenclamide inhibited the diazoxide effect on postischemic FENa (p < 0.01). Histology showed that kidneys pretreated with glibenclamide demonstrated an increase in injure in the thick ascending limb of outer medulla (p < 0.05). Glibenclamide significantly decreased post ischemic renal vascular resistance (p < 0.05). but had no significant effect on other renal function parameters. Our results suggest that sodium reabsorption is improved by K-ATP activation and blockade of K-ATP channels during IRI has an injury enhancing effect on renal epithelial function and histology. This may be mediated through K-ATP modulation in cell and or mitochondrial inner membrane.