68 resultados para Cd4
Resumo:
Background: The immune response to Porphyromonas gingivalis in the mouse abscess model is known to be dependent upon CD4 T-cell activation and the regulatory role of cytokines. The role of interleukin-10 (IL-10) in this mouse model was examined in vivo. Methods: One-week-old, female BALB/c mice were divided into 4 groups. Groups 1 and 2 were given intraperitoneal (ip) injections of phosphate buffered saline (PBS) weekly for 5 weeks. Group 3 was given an ip injection of rat immunoglobulin. Group 4 was injected with rat anti-IL-10 antibodies. At week 6, group 1 was sham-immunized with PBS, and groups 2, 3, and 4 were injected with P gingivalis lipopolysaccharide (Pg-LPS) weekly for 2 weeks. One week after the final immunization, delayed-type hypersensitivity (DTH) was assessed by footpad swelling to Pg-LPS. The level of serum antibodies to Pg-LPS and IFN-gamma (IFN-gamma) was determined by enzyme-linked immunosorbent assay. Dorsal abscess formation induced by the injection of viable P gingivalis was examined daily for 30 days. Results: The footpad swelling of the anti-IL-10-treated group (group 4) was significantly higher than that of groups 1 to 3. Similarly, the serum IFN-gamma level in group 4 was much higher than that of the other experimental groups. There was no significant difference in serum IgG antibodies to Pg-LPS in any of the experimental groups. However, the level of IgM antibodies in group 4 mice was significantly lower than that in groups 2 and 3. In addition, serum IgG1 was suppressed in group 4 mice, while IgG2a antibodies were raised. However, there was no difference observed between the levels of IgG2b and IgG3 antibodies in any group of mice. The lesions in sham-immunized mice (group 1) persisted for 30 days, and those in group 2 and 3 were undetected by day 18 and 20, respectively. In sharp contrast, lesions in group 4 had healed completely by day 13. Conclusions: This study has shown that IL-10 depletion in vivo in P gingivalis LPS-induced immune response in mice led to an elevated DTH response, an increase in serum IFN-gamma levels, and raised levels of IgG and IgG2a antibodies. Treatment with anti-IL-10 antibodies resulted in suppressed IgG I and IgM responses and a more rapid healing of abscesses than in non-IL-10-depleted mice. These results suggest that IL-10 depletion in Pg-LPS-induced immune response in mice may lead to a Th1-like immune response and provide strong protection against a subsequent challenge with live P gingivalis in an abscess model.
Resumo:
Proteolipid protein (PLP) is the most abundant protein of CNS myelin, and is posttranslationally acylated by covalent attachment of long chain fatty acids to cysteine residues via a thioester linkage. Two of the acylation sites are within epitopes of PLP that are encephalitogenic in SJL/J mice (PLP104-117 and PLP139-151) and against which increased immune responses have been detected in some multiple sclerosis patients. It is known that attachment of certain types of lipid side chains to peptides can result in their enhanced immunogenicity. The aim of this study was to determine whether thioacylated PLP peptides, as occur in the native protein, are more immunogenic than their nonacylated counterparts, and whether thioacylation influences the development of autoreactivity and experimental autoimmune encephalomyelitis. The results show that in comparison with nonacylated peptides, thioacylated PLP lipopeptides can induce greater T cell and Ab responses to both the acylated and nonacylated peptides. They also enhanced the development and chronicity of experimental autoimmune encephalomyelitis. Synthetic peptides in which the fatty acid was attached via an amide linkage at the N terminus were not encephalitogenic, and they induced greater proportions of CD8(+) cells in initial in vitro stimulation. Therefore, the lability and the site of the linkage between the peptide and fatty acid may be important for induction of encephalitogenic CD4(+) T cells. These results suggest that immune responses induced by endogenous thioacylated lipopeptides may contribute to the immunopathogenesis of chronic experimental demyelinating diseases and multiple sclerosis.
Resumo:
Immunity induced by the 19-kDa fragment of merozoite surface protein 1 is dependent on CD4(+) Th cells. However, we found that adoptively transferred CFSE-labeled Th cells specific for an epitope on Plasmodium yoelii 19-kDa fragment of merozoite surface protein 1 (peptide (p)24), but not OVA-specific T cells, were deleted as a result of P. yoelii infection. As a result of infection, spleen cells recovered from infected p24-specific T cell-transfused mice demonstrated reduced response to specific Ag. A higher percentage of CFSE-labeled p24-specific T cells stained positive with annexin and anti-active caspase-3 in infected compared with uninfected mice, suggesting that apoptosis contributed to deletion of p24-specific T cells during infection. Apoptosis correlated with increased percentages of p24-specific T cells that stained positive for Fas from infected mice, suggesting that P. yoelii-induced apoptosis is, at least in part, mediated by Fas. However, bystander cells of other specificities also showed increased Fas expression during infection, suggesting that Fas expression alone is not sufficient for apoptosis. These data have implications for the development of immunity in the face of endemic parasite exposure.
Resumo:
Dendritic cells (DCs) are important targets for human immunodeficiency virus (HIV) because of their roles during transmission and also maintenance of immune competence. Furthermore, DCs are a key cell in the development of HIV vaccines. In both these settings the mechanism of binding of the HIV envelope protein gp120 to DCs is of importance. Recently a single C-type lectin receptor (CLR), DC-SIGN, has been reported to be the predominant receptor on monocyte-derived DCs (MD-DCs) rather than CD4. In this study a novel biotinylated gp120 assay was used to determine whether CLR or CD4 were predominant receptors on MDDCs and ex vivo blood DCs. CLR bound more than 80% of gp120 on MDDCs, with residual binding attributable to CD4, reconfirming that CLRs were the major receptors for gp120 on MDDCs. However, in contrast to recent reports, gp120 binding to at least 3 CLRs was observed: DC-SIGN, mannose receptor, and unidentified trypsin resistant CLR(s). In marked contrast, freshly isolated and cultured CD11c(+ve) and CD11c(-ve) blood DCs only bound gp120 via CD4. In view of these marked differences between MDDCs and blood DCs, HIV capture by DCs and transfer mechanisms to T cells as well as potential antigenic processing pathways will need to be determined for each DC phenotype. (Blood. 2001;98:2482-2488) (C) 2001 by The American Society of Hematology.
Resumo:
Background: Dendritic cells (DC) are believed to be one of the first cell types infected during HIV transmission. Recently a single C-type lectin receptor (CLR), DC-SIGN, has been reported to be the predominant receptor on monocyte derived DC (MDDC) rather than CD4. The role of other CLRs in HIV binding and HIV binding by CLRs on other types of DC in vivo is largely unknown. Objectives and study design: Review HIV binding to DC populations, both in vitro and in vivo, in light of the immense interest of a recently re-identified CLR called DC-SIGN. Results and conclusions: From recent work, it is clear that immature MDDC have a complex pattern of HIV gp120 binding. In contrast to other cell types gp120 has the potential to bind to several receptors on DC including CD4 and several types of C type lectin receptor, not just exclusively DC-SIGN. Given the diverse types of DC in vivo future work will need to focus on defining the receptors for HIV binding to these different cell types. Mucosal transmission of HIV in vivo targets immature sessile DCs, including Langerhans cells which lack DC-SIGN. The role of CLRs and DC-SIGN in such transmission remains to be defined. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The plasma membrane of differentiated skeletal muscle fibers comprises the sarcolemma, the transverse (T) tubule network, and the neuromuscular and muscle-tendon junctions. We analyzed the organization of these domains in relation to defined surface markers, beta -dystroglycan, dystrophin, and caveolin-3, These markers were shown to exhibit highly organized arrays along the length of the fiber. Caveolin-3 and beta -dystroglycan/dystrophin showed distinct, but to some extent overlapping, labeling patterns and both markers left transverse tubule openings clear. This labeling pattern revealed microdomains over the entire plasma membrane with the exception of the neuromuscular and muscle-tendon junctions which formed distinct demarcated macrodomains. Our results suggest that the entire plasma membrane of mature muscle comprises a mosaic of T tubule domains together with sareolemmal caveolae and beta -dystroglycan domains. The domains identified with these markers were examined with respect to targeting of viral proteins and other expressed domain-specific markers, We found that each marker protein was targeted to distinct microdomains, The macrodomains were intensely labeled with all our markers. Replacing the cytoplasmic tail of the vesicular stomatitis virus glycoprotein with that of CD4 resulted in retargeting from one domain to another. The domain-specific protein distribution at the muscle cell surface may be generated by targeting pathways requiring specific sorting information but this trafficking is different from the conventional apical-basolateral division. (C) 2001 Academic Press.
Resumo:
The contribution of synovial cells to the pathogenesis of rheumatoid arthritis (RA) is only partly understood. Monoclonal antibody (mAb) 1D5 is one of very few mAb ever raised against RA synovial cells in order to study the biology of these cells. Studies on the expression pattern and structural features of the 1D5 Ag suggest that 1D5 recognizes human vascular cell adhesion molecule-1 (VCAM-1), which is an intercellular adhesion molecule. Vascular cell adhesion molecule-1 may be involved in a number of crucial intercellular interactions in RA.
Resumo:
T cell cytokine profiles and specific serum antibody levels in five groups of BALB/c mice immunized with saline alone, viable Fusobacterium nucleatum ATCC 25586, viable Porphyromonas gingivalis ATCC 33277, F. nucleatum followed by P. gingivalis and P. gingivalis followed by F nucleatum were determined. Splenic CD4 and CD8 cells were examined for intracytoplasmic interleukin (IL)-4, interferon (IFN)-gamma and IL-10 by dual colour flow cytometry and the levels of serum anti-F. nucleatum and anti-P. gingivalis antibodies determined by an ELISA. Both Th1 and Th2 responses were demonstrated by all groups, and while there were slightly lower percentages of cytokine positive T cells in mice injected with F. nucleatum alone compared with the other groups immunized with bacteria., F nucleatum had no effect on the T cell production of cytokines induced by P gingivalis in the two groups immunized with both organisms. However, the percentages of cytokine positive CD8 cells were generally significantly higher than those of the CD4 cells. Mice immunized with F nucleatum alone had high levels of serum anti-E nucleatum antibodies with very low levels of P. gingivalis antibodies, whereas mice injected with P gingivalis alone produced anti-P. gingivalis antibodies predominantly. Although the levels of anti-E nucleatum antibodies in mice injected with E nucleatum followed by P. gingivalis were the same as in mice immunized with F nucleatum alone, antibody levels to P. gingivalis were very low. In contrast, mice injected with P. gingivalis followed by F nucleatum produced equal levels of both anti-P. gingivalis and anti-F nucleatum antibodies, although at lower levels than the other three groups immunized with bacteria, respectively. Anti-Actinobacillus actitiomycetemcomitans, Bacteroides forsythus and Prevotella intermedia serum antibody levels were also determined and found to be negligible. In conclusion, F nucleatum immunization does not affect the splenic T cell cytokine response to P. gingivalis. However, F nucleatum immunization prior to that of P. gingivalis almost completely inhibited the production of anti-P gingivalis antibodies while P. gingivalis injection before F. nucleatum demonstrated a partial inhibitory effect by P. gingivalis on antibody production to F. nucleatum. The significance of these results with respect to human periodontal disease is difficult to determine. However, they may explain in part differing responses to P. gingivalis in different individuals who may or may not have had prior exposure to F. nucleatum. Finally, the results suggested that P. gingivalis and F. nucleatum do not induce the production of cross-reactive antibodies to other oral microorganisms.
Resumo:
Background: Susceptibility to periodontal infections may, in part, be genetically determined. Porphyromonas gingivalis is a major periodontopathogen, and the immune response to this organism requires T-cell help. The aim of the present study was to examine the specific T-cell cytokine responses to P gingivalis outer membrane antigens in a mouse model and their relationship with H-2 haplotype. Methods: BALB/c and DBA/2J (H-2(d)), CBACaH (H-2(k)), and C57BL6 (H-2(b)) mice were immunized with P gingivalis outer membrane antigens weekly for 3 weeks. One week after the final injection, the spleens were removed, and 6 T-cell lines specific for P gingivalis were established for each mouse strain. The percentage of CD4 and CD8 cells in the P gingivalis-specific T-cell lines staining positive for intracytoplasmic interleukin (IL)-4, interferon (IFN)-gamma, and IL-10 was determined by 2-color flow cytometry. Results: The cytokine profiles of T-cell lines from BALB/c and DBA/2J mice showed no significant differences. Significantly fewer IL4+, IFN-gamma+, and IL-10+ CD4 cells than IL-4+, IFN-gamma+, and IL-10+ CD8 cells, respectively, were demonstrated for both strains. P gingivalis-specific T-cell lines generated from CBACaH mice were similar to those generated from BALB/c and DBA/2J mice; however, the mean percentage of IL4+ CD4 cells in CBACaH mice was lower than the percentage of IFN-gamma+ CD4 cells. Also, the mean percentage of IFN-gamma+ CD4 cells in CBACaH mice was significantly increased compared to DBA/2J mice. Unlike the other 3 strains, T-cell lines established from C57BL6 mice contained similar percentages of cytokine-positive cells, although the percentage of IL-4+ CD4 cells was reduced in comparison to the percentage of CD8 cells. However, comparisons with the other 3 strains demonstrated a higher percentage of IL-4+ CD4 cells than in lines established from the spleens of DBA/2J mice, IFN-gamma+ CD4 cells than in lines established from BALB/c and CBACaH mice, and IL-10+ CD4 cells than in lines established from all 3 other strains. No significant differences in the percentage of positive CD8 cells were demonstrated between lines in the 4 strains of mice. Conclusion: The specific T-cell response to P gingivalis in mice may, in the case of the CD4 response, depend on MHC genes. These findings are consistent with the concept that patient susceptibility is important to the outcome of periodontal infection and may, in part, be genetically determined.
Resumo:
Vaccines to efficiently block or limit sexual transmission of both HIV and human papilloma virus (HPV) are urgently needed. Chimeric virus-like-particle (VLP) vaccines consisting of both multimerized HPV L1 proteins and fragments of SIV gag p27, HIV-1 tat, and HIV-1 rev proteins (HPV-SHIV VLPs) were constructed and administered to macaques both systemically and mucosally. An additional group of macaques first received a priming vaccination with DNA vaccines expressing the same SIV and HIV-1 antigens prior to chimeric HPV-SHIV VLP boosting vaccinations. Although HPV L1 antibodies were induced in all immunized macaques, weak antibody or T cell responses to the chimeric SHIV antigens were detected only in animals receiving the DNA prime/HPV-SHIV VLP boost vaccine regimen. Significant but partial protection from a virulent mucosal SHIV challenge was also detected only in the prime/boosted macaques and not in animals receiving the HPV-SHIV VLP vaccines alone, with three of five prime/boosted animals retaining some CD4+ T cells following challenge. Thus, although some immunogenicity and partial protection was observed in non-human primates receiving both DNA and chimeric HPV-SHIV VLP vaccines, significant improvements in vaccine design are required before we can confidently proceed with this approach to clinical trials. (C) 2002 Elsevier Science (USA).
Resumo:
Serum taken from mice immune to malaria as a result of infection and drug cure, or from mice immunized with a recombinant form of the merozoite surface protein, MSP1, can provide passive protection of recipient mice against the lethal parasite, Plasmodium yoelii YM. However, recipients of MSP1-immune serum go on to develop long-term immunity, whereas recipients of serum from mice naturally immune to malaria rapidly lose their resistance to infection. We demonstrate that 'infection/cure' serum suppresses the development of both antibody and cell-mediated parasite-specific responses in recipients, whereas these develop in recipients of MSP1-specific antibodies. These data have profound implications for our understanding of the development of malaria immunity in babies who passively acquire antibodies from their mothers.
Resumo:
Background The ability of T cells, acting independently of antibodies, to control malaria parasite growth in people has not been defined. If such cell-mediated immunity was shown to be effective, an additional vaccine strategy could be pursued. Our aim was to ascertain whether or not development of cell-mediated immunity to Plasmodium falciparum blood-stage infection could be induced in human beings by exposure to malaria parasites in very low density. Methods We enrolled five volunteers from the staff at our research institute who had never had malaria. We used a cryopreserved inoculum of red cells infected with P falciparum strain 3D7 to give them repeated subclinical infections of malaria that we then cured early with drugs, to induce cell-mediated immune responses. We tested for development of immunity by measurement of parasite concentrations in the blood of volunteers by PCR of the multicopy gene STEVOR and by following up the volunteers clinically, and by measuring antibody and cellular immune responses to the parasite. Findings After challenge and a extended period without drug cure, volunteers were protected against malaria as indicated by absence of parasites or parasite DNA in the blood, and absence of clinical symptoms. Immunity was characterised by absence of detectable antibodies that bind the parasite or infected red cells, but by the presence of a proliferative T-cell response, involving CD4+ and CD8+ T cells, a cytokine response, consisting of interferon gamma but not interleukin 4 or interleukin 10, induction of high concentrations of nitric oxide synthase activity in peripheral blood mononuclear cells, and a drop in the number of peripheral natural killer T cells. Interpretation People can be protected against the erythrocytic stage of malaria by a strong cell-mediated immune response, in the absence of detectable parasite-specific antibodies, suggesting an additional strategy for development of a malaria vaccine.
Resumo:
The BCR-ABL fusion proteins, b2a2 and b3a2, are potential targets for a beneficial graft-versus-leukemia (GVL) effect after allogeneic stem cell transplantation for chronic myeloid leukemia (CML). This study demonstrates that CD4(+) T cells specific to the b2a2 peptide can be generated from a normal allogeneic stem cell transplant donor after stimulation with monocyte-derived dendritic cells (Mo-DC) using culture conditions applicable to clinical use. Stimulation of donor T-cell enriched mononuclear cells (MNC) with b2a2-pulsed Mo-DC produced approximately 3 x 10(9) b2a2-specific CD4(+) T cells. The CD4(+) T cells were HLA-DR7 restricted. These results confirm that the generation of donor derived b2a2-specific T cells for clinical use is feasible and warrants clinical testing after stem cell transplantation.
Resumo:
Immunity induced by the 19-kDa fragment of Plasmodium yoelii merozoite surface protein 1 (MSP1(19)) is dependent on high titers of specific antibodies present at the time of challenge and a continuing active immune response postinfection. However, the specificity of the active immune response postinfection has not been defined. In particular, it is not known whether anti-MSP1(19) antibodies that arise following infection alone are sufficient for protection. We developed systems to investigate whether an MSP1(19)-specific antibody response alone both prechallenge and postchallenge is sufficient for protection. We were able to exclude antibodies with other specificities, as well as any contribution of MSP1(19)-specific CD4(+) T cells acting independent of antibody, and we concluded that an immune response focused solely on MSP1(19)-specific antibodies is sufficient for protection. The data imply that the ability of natural infection to boost an MSPI,g-specific antibody response should greatly improve vaccine efficacy.
Resumo:
Although vaccines have widely been regarded as the most cost-effective way to improve public health, for some organisms new technological advances in vaccine design and delivery, incurring additional developmental costs, will be essential. These organisms are typically those for which natural immunity is either slow to develop or does not develop at all. Clearly, such organisms have evolved strategies to evade immune responses and innovative approaches will be required to induce a type of immune response which is both different to that which develops naturally and is effective. This article describes some approaches to develop vaccines for two such organisms (malaria parasites and Streptococcus pyogenes (group A Streptococcus)) that are associated with widespread mortality and morbidity, mostly in the poorest countries of the world. At this stage, the challenges are primarily scientific, but if these hurdles are surmounted then the challenges will become financial ones - developing much needed vaccines for people least able to afford them. (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.