55 resultados para Carotid atheroma
Resumo:
Objective: The purpose of this study was to grow artificial blood vessels for autologous transplantation as arterial interposition grafts in a large animal model (dog). Method and results: Tubing up to 250 mm long, either bare or wrapped in biodegradable polyglycolic acid (Dexon) or nonbiodegradable polypropylene (Prolene) mesh, was inserted in the peritoneal or pleural cavity of dogs, using minimally invasive techniques, and tethered at one end to the wall with a loose suture. After 3 weeks the tubes and their tissue capsules were harvested, and the inert tubing was discarded. The wall of living tissue was uniformly 1-1.5 mm thick throughout its length, and consisted of multiple layers of myofibroblasts and matrix overlaid with a single layer of mesothelium. The myofibroblasts stained for a-smooth muscle actin, vimentin, and desmin. The bursting strength of tissue tubes with no biodegradable mesh scaffolds was in excess of 2500 mm Hg, and the suture holding strength was 11.5 N, both similar to that in dog carotid and femoral arteries. Eleven tissue tubes were transplanted as interposition grafts into the femoral artery of the same dog in which they were grown, and were harvested after 3 to 6.5 months. Eight remained patent during this time. At harvest, their lumens were lined with endothelium-like cells, and wall cells stained for alpha-actin, smooth muscle myosin, desmin and smoothelin; there was also a thick adventitia containing vasa vasorum. Conclusion: Peritoneal and pleural cavities of large animals can function as bioreactors to grow myofibroblast tubes for use as autologous vascular grafts.
Resumo:
A role for infection and inflammation in atherogenesis is widely accepted. Arterial endothelium has been shown to express heat shock protein 60 (HSP60) and, since human (hHSP60) and bacterial (GroEL) HSP60s are highly conserved, the immune response to bacteria may result in cross-reactivity, leading to endothelial damage and thus contribute to the pathogenesis of atherosclerosis. In this study, GroEL-specific T-cell lines from peripheral blood and GroEL-, hHSP60-, and Porphyromonas gingivalis-specific T-cell lines from atherosclerotic plaques were established and characterized in terms of their cross-reactive proliferative responses, cytokine and chemokine profiles, and T-cell receptor (TCR) V beta expression by flow cytometry. The cross-reactivity of several lines was demonstrated. The cytokine profiles of the artery T-cell lines specific for GroEL, hHSP60, and P. gingivalis demonstrated Th2 phenotype predominance in the CD4 subset and Tc0 phenotype predominance in the CD8 subset. A higher proportion of CD4 cells were positive for interferon-inducible protein 10 and RANTES, with low percentages of cells positive for monocyte chemoattractant protein 1 and macrophage inflammatory protein la, whereas a high percentage of CD8 cells expressed all four chemokines. Finally, there was overexpression of the TCR V beta 5.2 family in all lines. These cytokine, chemokine, and V beta profiles are similar to those demonstrated previously for P. gingivalis-specific lines established from periodontal disease patients. These results support the hypothesis that in some patients cross-reactivity of the immune response to bacterial HSPs, including those of periodontal pathogens, with arterial endothelial cells expressing hHSP60 may explain the apparent association between atherosclerosis and periodontal infection.
Resumo:
Aim Cardiovascular disease (CVD) rates are substantially higher among patients with Type 2 diabetes than in the general population. The objective of this study was to identify the determinants of carotid intima media thickness (IMT) in patients with Type 2 diabetes. Methods We measured the thickness of the intima media layer of the carotid artery, a strong predictor of the risk of future vascular events, in 397 Type 2 diabetic patients drawn from the Fenofibrate Intervention and Event Lowering in Diabetes study, prior to treatment allocation. Results The mean IMT was 0.78 mm [interquartile range (IQR) 0.23 mm], and the maximum IMT was 1.17 mm (IQR 0.36 mm). By multivariate analysis, age, sex, duration of diabetes, triglycerides, and total cholesterol were independently correlated with IMT, as was urine albumin-creatinine ratio (ACR) (P < 0.001). The effect of ACR on IMT was further examined by tertile. Clinically significant differences in IMT were associated with ACR > 0.65 mg/mmol, approximately one-fifth the standard clinical threshold for microalbuminuria (P < 0.01). Long-term diabetes, independent of other parameters, was associated with a 50% increase in age-related thickening. Conclusions IMT in people with Type 2 diabetes is independently and continuously related to urine albumin levels and to the duration of diabetes. These results support previous data linking urine albumin measurements within the normal range with increased ischaemic cardiac mortality in the setting of Type 2 diabetes, and strongly suggest that urine albumin levels within this range should trigger a formal evaluation for CVD.
Resumo:
The vascular organisation of the branchial basket was examined in two Tetraodontiform fishes; the three-barred porcupinefish, Dicotylichthys punctulatus and the banded toadfish, Marylina pleurosticta by scanning electron microscopy of vascular casts and standard histological approaches. In D. punctulatus, interarterial anastomoses (iaas) originated at high densities from the efferent filamental and branchial arteries, subsequently re-anastomosing to form progressively larger secondary vessels. Small branches of this system entered the filament body, where it was interspersed between the intrafilamental vessels. Large-bore secondary vessels ran parallel with the efferent branchial arteries, and were found to constitute an additional arterio-arterial pathway, in that these vessels exited the branchial basket in company with the mandibular, the carotid and the afferent and efferent branchial arteries, from where they gave rise to capillary beds after exit. Secondary vessels were not found to supply filament muscle; rather these tissues were supplied by single specialised vessels running in parallel between the efferent and afferent branchial arteries in both species examined. Although the branchial vascular anatomy was generally fairly similar for the two species examined, iaas were not found to originate from any branchial component in the banded toadfish, M. pleurosticta, which instead showed a moderate frequency of iaas on other vessels in the cephalic region. It is proposed that four independent vascular pathways may be present within the teleostean gill filament, the conventional arterio-arterial pathway across the respiratory lamellae; an arterio-arterial system of secondary vessels supplying the filament and non-branchial tissues; a system of vessels supplying the filament musculature; and the intrafilamental vessels (central venous sinus). The present study demonstrates that phylogenetic differences in the arrangement of the branchial vascular system occur between species of the same taxon.
Resumo:
Objective: Transcranial Doppler (TCD) ultrasonography is a technique that uses a hand-held Doppler transducer (placed on the surface of the cranial skin) to measure the velocity and pulsatility of blood flow within the intracranial and the extracranial arteries. This review critically evaluates the evidence for the use of TCD in the critical care population. Discussion: TCD has been frequently employed for the clinical evaluation of cerebral vasospasm following subarachnoid haemorrhage (SAH). To a lesser degree, TCD has also been used to evaluate cerebral autoregulatory capacity, monitor cerebral circulation during cardiopulmonary bypass and carotid endarterectomies and to diagnose brain death. Technological advances such as M mode, colour Doppler and three-dimensional power Doppler ultrasonography have extended the scope of TCD to include other non-critical care applications including assessment of cerebral emboli, functional TCD and the management of sickle cell disease. Conclusions: Despite publications suggesting concordance between TCD velocity measurements and cerebral blood flow there are few randomized controlled studies demonstrating an improved outcome with the use of TCD monitoring in neurocritical care. Newer developments in this technology include venous Doppler, functional Doppler and use of ultrasound contrast agents.
Resumo:
We propose a novel interpretation and usage of Neural Network (NN) in modeling physiological signals, which are allowed to be nonlinear and/or nonstationary. The method consists of training a NN for the k-step prediction of a physiological signal, and then examining the connection-weight-space (CWS) of the NN to extract information about the signal generator mechanism. We de. ne a novel feature, Normalized Vector Separation (gamma(ij)), to measure the separation of two arbitrary states i and j in the CWS and use it to track the state changes of the generating system. The performance of the method is examined via synthetic signals and clinical EEG. Synthetic data indicates that gamma(ij) can track the system down to a SNR of 3.5 dB. Clinical data obtained from three patients undergoing carotid endarterectomy of the brain showed that EEG could be modeled (within a root-means-squared-error of 0.01) by the proposed method, and the blood perfusion state of the brain could be monitored via gamma(ij), with small NNs having no more than 21 connection weight altogether.
Resumo:
Background: Despite the availability of expert surgeons and preoperative imaging investigations, some patients require reoperation for persistent or recurrent hyperparathyroidisms. Method: Fifty consecutive patients were reviewed. Results: There were 28 persistent cases (24 primary, 4 secondary) and 22 recurrent cases (15 primary, 7 secondary) and 98% had successful surgical treatment. Multigland disease was present in 24 of 39 (62%) of primary cases, 11 of 24 persistent and 13 of 15 recurrent (P < 0.02). Four patients in the recurrent primary group had multiple endocrine neoplasia type 1, whereas the other 20 primary patients had sporadic multigland disease. Multigland disease was present in all secondary cases and was a very important factor in this entire series of patients (70%). Regrowth of a remnant of a gland biopsied or partially resected at an earlier operation was the cause of recurrence in 12 of 15 primary and 2 of 7 secondary cases (P < 0.05). The site of missed glands in persistent disease was ectopic in 60%. Ectopic glands were found in the following sites: intrathyroidal 10 (8 inferior and 2 superior), intrathymic 9, posterior mediastinum 4, base of skull 2, carotid sheath 1 and supernumerary 5. Investigations to locate missing glands were positive in 28 of 43 sestamibi scans (65%), 14 of 34 ultrasound scans (41%), 10 of 24 computed tomography scans (42%) and 11 of 13 selective venous sampling tests (85%). Conclusion: Some persistent cases are unavoidable because of ectopic locations and some recurrences are inevitable because of multigland disease.
Resumo:
Vascular disease is accelerated in patients with Type 2 diabetes mellitus (T2DM). Since the systemic vasculature plays a pivotal role in myocardial loading, this study aimed to determine the effect of arterial characteristics on left ventricular (LV) morphology and function in patients with T2DM. Conventional echocardiography and tissue Doppler imaging were performed in 172 T2DM patients (95 men; aged 55±11y) with preserved ejection fraction (62±5%). Patients were stratified into groups based on LV geometric pattern (normal [n = 79], concentric remodeling [n = 33], concentric hypertrophy [n = 29], eccentric hypertrophy [n = 31]). Total arterial compliance (TAC) was recorded by simultaneous radial tonometry and aortic outflow pulsed wave Doppler. Arterial (brachial and carotid) structure and function were determined by standard ultrasound methods. There were no significant differences between the LV geometric groups in demographic or clinical parameters. The concentric hypertrophy group had significantly increased carotid artery diameter (6.0±0.7mm versus 6.5±0.7mm; p < 0.05) and stiffness (1912±1203 dynes/cm2mm versus 2976±2695 dynes/cm2mm×10−6; p < 0.05) compared to those with normal geometry. However, TAC did not differ between groups. LV diastolic function, as determined by the ratio of diastolic mitral inflow velocity to mitral annulus tissue velocity (E/E_), was significantly associated with carotid artery relative wall thickness and intima media thickness (p < 0.05). Moreover, E/E_ was independently predicted by carotid artery relative wall thickness (β = 22.9; p = 0.007). We conclude that structural characteristics of the carotid artery are associated with abnormal LV structure and function in patients with T2DM. The LV functional irregularities may be a downstream consequence of amplified pressure wave reflections effecting sub-optimal ventricular-vascular interaction.